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EXECUTIVE SUMMARY 

Coastal bridges are critical to emergency response after extreme events and are vulnerable to 

cascading seismic-tsunami events. After the 2011 earthquake and subsequent tsunami in Japan, 

instances of damage and collapse were observed in Japanese bridges that survived the earthquake but 

failed under the hydrodynamic loads induced by the tsunami. The Pacific Northwest in the United States 

could experience similar tsunami hazards.  To ensure reliable mobility after extreme events, it is 

necessary to understand, model, and design bridge response for tsunami loading. However, studies on 

wave-structure interaction are constrained by the financial cost of experiments and the computational 

cost of computational fluid dynamics (CFD) and fluid-structure interaction (FSI) simulations. To 

practically perform such simulations with reduced computational cost, a pilot study, which uses machine 

learning algorithms for basic structural engineering problems, is presented. Similar machine learning 

models can eventually be used to estimate the tsunami loading on bridges based on structural 

properties and flow conditions. Machine learning (ML) and deep learning (DL) algorithms, when trained 

for a specific problem, can produce faster results than finite element methods (FEM). Nonetheless, ML 

and DL algorithms are data-driven and could produce unreliable results when evaluated outside the 

training data domain. The interpretability of ML and DL algorithms can also be lost during the training of 

the model. 

The reliability and interpretability of ML and DL can be resolved by introducing physics into the 

ML and DL architectures. This project studied the performance of data-driven and physics-informed DL 

algorithms in structural engineering applications. After a brief overview of ML and DL, this report 

presents a study of the DL algorithm for static and dynamic problems using single-degree-of-freedom 

(SDOF) oscillators representing a simplified model of a bridge pier. Physics was introduced into the DL 

algorithm by extracting the residual from the finite-element analysis framework, OpenSees, and 

integrating it with the loss function during training. The performance of the DL algorithm with and 

without physics was evaluated by using different loss functions, activation functions, and other 

hyperparameters. For an SDOF for linear static and linear dynamic problems, the data-driven and 

physics-informed deep learning algorithms produced similar results. Moreover, if an appropriate neural 

network architecture was utilized, the DL models were able to extrapolate well beyond the test data.  

Although the studied cases were for relatively simple SDOF linear static and dynamic problems, 

DL algorithms have the potential to produce reliable results for multi-degree-of-freedom systems, 

including the relevant physics. The approach of introducing OpenSees along with the ML and DL 

algorithms also presents an opportunity for engineers to have fast and reliable results by supplementing 

analyses with ML and DL techniques. Nonlinear problems, multiple degrees of freedom systems, and FSI 

studies, including the residual during the learning process, should be assessed to evaluate the 

performance of DL algorithms beyond the simple structural systems presented herein. 



Ŵ. INTRODUCTION 

Coastal bridges are vulnerable to tsunami damage. The ŵųŴŴ Tohoku tsunami in Japan resulted in 
damage to over ŵŸų bridges, delaying post-event recovery and emergency response. Bridges that survived 
the earthquake failed under the subsequent tsunami due to the hydrodynamic demands. The Pacific 
Northwest has similar hazards. Many bridges serve as lifelines for the coastal regions, which are critical 
for the mobility of people and goods and to provide post-event emergency response. Thus, it is essential 
to understand the response of coastal bridges under tsunami loading to ensure safety after extreme 
events. However, the financial cost of experimental tests makes physically simulating the response of 
structures to tsunami loadings very expensive. On the other hand, simulation-based design, uncertainty 
propagation, fragility analysis, etc., which require many numerical simulations including computational 
fluid dynamics (CFD) and fluid-structure interaction (FSI), are impractical because of their computational 
expense and long run times. 

To mitigate the computational costs associated with CFD/ FSI models, machine learning (ML) and 
deep learning (DL) can be utilized to train models that represent the salient features of the numerical 
analysis with reduced runtimes. Once the model has been trained on the respective data, the ML models 
can run quickly, producing results in a shorter time than the numerical model. However, since the ML and 
DL algorithms are data-driven in nature, i.e., they may not enforce the governing equations of motion, 
their reliability and interpretability can be suspect in comparison to numerical simulations. The reliability 
and interpretability of the ML and DL algorithms make it difficult to trust their solutions for a given problem 
based on a purely data-driven approach. A number of studies have tried to address the interpretability 
of ML and DL algorithm (Gilpin et al. ŵųŴŻ) (Bibal and Frénay ŵųŴŹ) (Carvalho et al. ŵųŴż) (Moraffah et al. 
ŵųŵų). All concluded that ML and DL algorithms need to provide satisfactory explanations of their solution 
in order to be widely accepted. 

This project addressed the interpretability and reliability of ML and DL algorithms by introducing 
physical equations into the learning algorithms. To understand ML and DL algorithms, this study produced 
results for a simple representation of a bridge using a single-degree-of-freedom (SDOF) oscillator subjected 
to static and dynamic analyses. Numerical results were calculated by using the finite element analysis 
framework Open System for Earthquake Engineering Simulation (OpenSees), which is often used for civil 
engineering applications. The numerical results from OpenSees were used to generate the training data. 
The residual, calculated by using OpenSees, was then incorporated into the loss function during training 
to aid learning of the desired equations of motion; the loss function is the main criterion from which the 
ML and DL algorithm learns and then evaluates the solution. 

Ŵ 



Ŵ.Ŵ. Objectives 

This report presents a pilot study to use machine learning algorithms to learn static and dynamic 
structural response, which can be adapted for CFD/ FSI problems to better understand tsunami loading on 
bridges. 

The objectives of this report included the following: 

Ŵ. Review viable ML and DL algorithms and select potential algorithms for learning. There are many 
ML/DL algorithms available for different purposes. It is important to use the ML/ DL algorithm best 
suited to the problem for robust results. Many ML and DL algorithms have different characteristics; 
e.g., artificial neural networks (ANN) have been used for the design of steel structures (Adeli and 
Yeh ŴżŻż) and reliability analysis of steel frames (Papadrakakis et al. ŴżżŹ), a convolutional neural 
network (CNN) can be used to identify damage by using images of structures (Cha et al. ŵųŴź) (Dung 
and Anh ŵųŴż), and a recurrent neural network (RNN) can be used for time series analysis of structures 
(Peng et al. ŵųŵŴ). 

ŵ. Develop a learning framework that allows viable ML/ DL algorithms selected from objective (Ŵ) to 
learn from the training data extracted from finite-element analyses while minimizing the residual 
to satisfy the governing equations. A proper framework is needed to include the physical equations 
into the ML/ DL algorithm to achieve improved reliability and interpretability of the ML/ DL results. 

Ŷ. Test the ability of the ML/ DL algorithm to generalize to new conditions for the following metrics: 
accuracy (relative to the original finite element model), interpretability (maintaining the relevant 
physics), and dimensions (speed of computation). The data-driven ML/ DL algorithms tend to perform 
well only within the training data domain. This is because the ML/ DL algorithm conventionally 
learns the features of the data without attempting to satisfy the governing equations. A physics-informed 
ML/ DL algorithm should be able to generalize well to new conditions and extrapolate results beyond 
the training data, as it learns based on the residual as well as the data features. 

ŷ. Demonstrate the resulting ML/ DL architecture on static and dynamic SDOFs with and without 
physics. 

Ŵ.ŵ. Organization of Report 

This report consists of seven chapters. Chapter ŵ includes the literature review of relevant machine 
learning and deep learning algorithms. Chapter Ŷ presents the deep learning algorithm and its suitability 
for a static model with constant stiffness. Chapter ŷ provides the deep learning algorithm implementation 
for a static model with varying stiffness. Chapter Ÿ introduces deep learning algorithms for dynamic problems. 
Chapter Ź describes a study that preliminarily estimates the effects of FSI on a flexible beam-column. 
Chapter ź describes the summary and conclusions of the report. 
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ŵ. MACHINE LEARNING/ DEEP LEARNING INTRODUCTION 

ŵ.Ŵ. Introduction 

Machine learning (ML) is a branch of artificial intelligence (AI) that includes many algorithms to 
map inputs to outputs. When given enough data, ML identifies patterns and produces good approximations 
of the model representing that data. These approximations of the data may not be explainable/ interpretable, 
but the resulting ML program can still be used to identify patterns in the data (Goodfellow et al. ŵųŴŹ). 

To conceptually understand ML, traditional analysis methods can be compared to ML techniques. 
Many analysis methods take inputs and then approximate outputs based on satisfying physical equations. 
For example, by Newton’s second law, inertial forces arise when a body with mass is accelerated. In structural 
dynamics, the solution at the next time step can be analytically or numerically found based on adequately 
satisfying Newton’s second law, given some inputs (e.g., properties of the body, like its mass, and an 
applied time-varying force p(t)) to estimate some outputs (e.g., the motion of the body in terms of displacement, 
velocity, and acceleration). 

In contrast, ML takes inputs (e.g., properties of the body and p(t)) and outputs (e.g., the motion 
of the body) to approximate the program (e.g., finding a pattern representing Newton’s second law); see 
figure ŵ.Ŵ. The ML algorithm extracts patterns from given inputs and outputs to produce the program 
rather than the output (Goodfellow et al. ŵųŴŹ). The resulting program from the ML algorithm then estimates 
new outputs from new inputs that were not in the original training data. This process of mapping given 
inputs to the outputs to learn the program is called learning or training. To check the performance of the 
ML program, the learned program is checked on an unseen dataset, and is known as testing. 

ŵ.ŵ. Types of Machine Learning 

Machine learning can be divided into two categories defined by the learning process: [i] supervised 
learning and [ii] unsupervised learning. These two types of machine learning differ from each other based 
on their application or task. A task is a process of how the algorithm estimates an output given some 
input from the program. Supervised learning is when the machine learning algorithm is given the inputs 
and outputs, and the class labels (or supervisor) are known. In contrast, unsupervised learning is when 
the machine learning algorithm knows only the inputs of the data and does not have any class labels. 

Ŵ.Ŵ.ų. Supervised Learning 

In supervised learning, the model is assumed to be defined by parameters, θ: 

y = g(x|θ) (ŵ.Ŵ) 
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Figure ŵ.Ŵ: Comparison between traditional program and machine learning 

where g(.) is the model (algorithm/program) that the machine learning algorithm is attempting 
to learn; θ are the parameters that define the model (e.g., weights and biases explained in subsection 
ŵ.Ŷ.Ŷ), x is the inputs, and y is the outputs (or sometimes the class labels of the data). 

Examples of supervised learning include regression problems. For example, in linear regression, 
Equation ŵ.Ŵ becomes: 

y = wx + w0 (ŵ.ŵ) 

where w and w0 are the weight and biases given to the inputs and are a variable in the learning 
process to get a better fit to the model. 

Figure ŵ.ŵ shows an example of regression to predict the drift capacity of reinforced concrete 
walls. The inputs, x, include the reinforced concrete wall attributes such as axial load ratio, boundary 
longitudinal reinforcement ratio, web transverse reinforcement ratio, etc. and the outputs, y, include 
the drift capacity of the wall (Aladsani et al. ŵųŵŵ). Based on data pairs of (x, y), the supervised learning 
algorithm learns y as a function of x that follows the form of Equation ŵ.ŵ (Alpaydin ŵųŵų). 

Ŵ.Ŵ.Ŵ. Unsupervised Learning 

The main aim of unsupervised learning is to find patterns in the input data (Alpaydin ŵųŵų). Finding 
clusters or groups in the data is an example of unsupervised learning. For example, unsupervised learning 
can be used to find groups or patterns within the data for damage detection in structures (Daneshvar and 
Sarmadi ŵųŵŵ). 
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Figure ŵ.ŵ: Supervised learning regression example: drift capacity for reinforced concrete walls predicted 
vs experimental (Aladsani et al. ŵųŵŵ) 

ŵ.Ŷ. Deep Learning 

Deep learning is a subcategory of machine learning inspired by the structure and function of 
the brain’s neural network. Originally, deep learning was known as the multi-layer perceptron (MLP) 
(Rosenblatt ŴżŸŻ). Over the years, deep learning has been defined by many different names, including 
deep learning models, nets, neural nets, or neural networks. Research interest in deep learning grew 
in the ŴżŻųs (Parker ŴżŻŸ) (LeCun et al. ŴżŻŻ) and then peaked in the ŵųųųs due to the availability of 
massive amounts of data (Nichols et al. ŵųŴż). 

Ŵ.ŵ.ų. Artificial Neural Network 

An artificial neural network (ANN) is composed of a collection of connections known as neurons. 
Initially, neurons were modeled in ŴżŷŶ (McCulloch and Pitts ŴżŷŶ) as a switch that receives information 
from other neurons. Depending on the relevance of the information received, the neurons remain active 
or inactive. In modern ANNs, these neurons are organized primarily into three types of layers, namely 
the Ŵ) input layer, ŵ) hidden layer(s), and Ŷ) output layer; see figure ŵ.Ŷ. The properties of the ANN and its 
function depend on the properties of the hidden layers. For example, if the hidden layers are convolution 
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layers, the network becomes a convolution neural network (CNN). If the hidden layers are long short-term 
memory (LSTM) layers, the network becomes a recurrent neural network (RNN). The hidden layers can 
also be dense layers, meaning all the neurons of the network are connected. 

Figure ŵ.Ŷ: Architecture of an ANN 

Artificial Neuron 

Neurons are the fundamental units of the brain. The brain consists of Ŵųų billion biological neurons 
that perform a simple operation by receiving electrical pulses from other neurons. They receive information 
(inputs) from the external world, send commands (outputs) to other parts of the body, e.g., muscles, and 
relay or transform electrical signals. A brain neuron consists of dendrites, soma (cell body), and axons 
(figure ŵ.ŷ). 

Figure ŵ.ŷ: Brain neuron 

An artificial neuron is roughly based on the function of brain neurons. In ANNs, the functionality 
of the neuron is based on the activation function. 
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Ŵ.ŵ.Ŵ. Activation Function 

The activation function introduces nonlinearities into Equation ŵ.ŵ, making the network capable 
of learning complex problems. There are many activation functions available today, and each activation 
function has advantages and disadvantages. The selection of the activation function depends on nonlinearity 
(e.g., nonlinear neuron captures parabolic trends), range (e.g., <ų,Ŵ>,<-Ŵ,Ŵ>, or <ų,∞>), derivative (useful 
for back propagation, explained in subsection ŵ.Ÿ.ŵ), and value near the origin (Gulikers ŵųŴŻ). Some of 
the most used activation functions and their advantages and disadvantages are summarized below. 

Sigmoid 

The sigmoid function is the most widely used activation function. It is defined as: 

xe 
Sigmoid(x) = (ŵ.Ŷ)

1 + ex 

where x is the input to the function. 

The advantage of the sigmoid function is that it has a smooth gradient and maps to values between 
ų and Ŵ, resulting in clear predictions. The sigmoid function predictive qualities are illustrated in figure 
ŵ.Ÿ,where the values of x above ŵ and below -ŵ are mapped to values of Ŵ and ų respectively. 

A disadvantage of the sigmoid function is its vanishing gradient, i.e., very large and small values 
of x result in a negligible change in f(x). In this case, the NN learns very slowly or does not learn at all. 
Other disadvantages of the sigmoid function include outputs that are not centered around zero and the 
computational expense. 

Hyperbolic Tangent 

The hyperbolic tangent (tanh) function is a scaled version of the sigmoid function. It is defined as: 

−xex − e 
tanh(x) = (ŵ.ŷ) −xex + e 

Note, f(x) is now zero-centered. However, the disadvantages of having a vanishing gradient 
and being computationally expensive, similar to the sigmoid function, still remain. Figure ŵ.Ź shows the 
hyperbolic tangent function. Figure ŵ.ź compares the performance of tanh and sigmoid functions, showing 
that tanh performs better than sigmoid (Glorot and Bengio ŵųŴų). 
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Figure ŵ.Ÿ: Sigmoid function 

Figure ŵ.Ź: Hyperbolic tangent function 
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Figure ŵ.ź: Hyperbolic tangent (red) has a lower test error than sigmoid (blue) (Glorot and Bengio ŵųŴų) 

Rectified Linear Unit 

The Rectified Linear Unit (ReLU) is a popular activation function. The equation for ReLU is 

ReLU(x) = max(0, x) (ŵ.Ÿ) 

The ReLU function always maps to zero for all negative inputs. When the input is greater than 
zero, the output is the identity function. The derivative for positive input values of x is always equal to 
Ŵ (figure ŵ.Ż), making the network computationally efficient and faster at learning. The convergence of 
ReLU activation functions can be seven times faster than the sigmoid function (Krizhevsky et al. ŵųŴŵ) 
(figure ŵ.ż). 

Disadvantages of the ReLU function include the dying ReLU phenomenon, which is when inputs 
are nearly zero or negative. In this case, the gradient becomes zero and the network cannot learn anymore. 
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Figure ŵ.Ż: ReLU function 

Figure ŵ.ż: ReLU vs sigmoid function 
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Leaky ReLU 

To avoid the dying ReLU phenomenon, the leaky ReLU was introduced as an activation function. It 
is defined as: 

LeakyReLU(x) = max(αx, x) (ŵ.Ź) 

where α is a small constant. Figure ŵ.Ŵų plots the leaky ReLU for an α value of ų.ųŸ. 

Although the leaky ReLU solves the dying ReLU problem, the predictions of leaky ReLU may not 
be consistent for negative input values of x. 

Figure ŵ.Ŵų: Leaky ReLU function 

Ŵ.ŵ.ŵ. Weights and Biases 

A neural network is the combination of connected layers of neurons. To ”turn on” each neuron, 
multiple weights, w, are assigned to the inputs. The dot product of the weights w and inputs x are calculated, 
and an activation function is applied to generate the output. A bias, b, provides flexibility (shifting the 
results towards positive and negative) in the neuron. Using these terms, Equation ŵ.Ŵ can be re-written as 
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h(x) = g(x1w1 + x2w2 + x3w3 + b) 
(ŵ.ź) 

h(x) = g(w T x + B) 

where g(.) is the activation function, x are inputs, w are weights assigned to the inputs, b is the 
bias, and h(x) is the output. 

Increasing the weights of the input activates the function more to reflect the importance of the 
input. Figure ŵ.ŴŴ (a) shows that an increase in weights to the sigmoid function makes the curve more 
linear and has a higher activation,whereas figure ŵ.ŴŴ (b) shows that an increase in bias changes the node 
activation from -ŷ to ų to ŷ to add more flexibility to the function. 

Figure ŵ.ŴŴ: (a) Different weights, (b) Different bias 

Ŵ.ŵ.Ŷ. A Simple Neural Network 

A neural network becomes more flexible as more hidden layers are added to the network. With 
no hidden layers in the neural network, the program collapses into linear regression in Equation ŵ.ŵ. Adding 
more hidden layers to the NN increases the nonlinearity of the network. A single hidden layer network 
acts as the boundary of a convex region, as shown in figure ŵ.Ŵŵ. It can estimate the XOR problem, i.e., if 
the two inputs of the problem are different, then the output is true or else the output is false. For example, 
if the inputs are Ŵ and ų, then it is classified as true, but if the inputs are ų and ų or Ŵ and Ŵ, then the output 
is false. 

When the NN has two hidden layers, the flexibility of the network increases, and the NN is then 
the combination of convex regions, as shown in figure ŵ.ŴŶ. 
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Figure ŵ.Ŵŵ: (a) A single hidden layer NN, (b) XOR problem 

Figure ŵ.ŴŶ: (a) Two hidden layer NN, (b) XOR problem, (c) Complex problem 

ŵ.ŷ. Feedforward Pass 

The information in an NN flows from the inputs, x, to the outputs by computing the function 
defined in Equation ŵ.Ŵ. This flow of information is known as the feedforward pass (Goodfellow et al. 
ŵųŴŹ). The purpose of a feedforward pass is to find the model that can be used to estimate the outputs 
from the inputs. This model is represented by weights, w, assigned to each node of the NN and the bias, 
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b. 

The feedforward pass can be explained with the help of a three-layer network, which includes 
an input, one hidden, and an output layer; see figure ŵ.Ŵŷ. The outputs of each layer, h, are described 
mathematically as: 

(2) (1) (1) (1) (1)
h = g(x1w + x2w + x3w + b )1 11 12 13 1 
(2) (1) (1) (1) (1)

h = g(x1w + x2w + x3w + b )2 21 22 33 2 
(2) (1) (1) (1) (1)

h = g(x1w + x2w + x3w + b )3 31 32 33 3 
(3) (2) (2) (2) (2) (2) (2) (2)

= g(h w + h w + h w + b )hW,b(x) = h1 1 11 2 12 3 13 1 

where w(k) refers to i node in the connection layer, j refers to the originating layer, and k refers ij 

to the number of layers. 

The output of each layer is the summation of the bias, b, and inputs, x, of the previous layer 
multiplied by a weight. This summation is then passed through an activation function, g, to introduce 
nonlinearities. 

To initiate training, the weights and the bias at the start of the training of the NN are initially 
set to random values. These values are then updated by backpropagation (subsection ŵ.Ÿ.ŵ), with each 
feed-forward pass, updating the “model” represented by the NN. 

Figure ŵ.Ŵŷ: Neural network with input, hidden and output layer 
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ŵ.Ÿ. Training a Neural Network 

To train a NN for an estimate of the output, the NN should identify the best weights and bias to 
represent the problem. These weights and biases are optimized by the loss function (error) at the end of 
a feedforward pass. 

Ŵ.ŷ.ų. Cost Functions 

In supervised learning, the loss function is minimized to find optimal weights and bias. The loss 
function returns the value of the error to the training data after each feedforward pass. The cost function 
is then the average of the loss function over n training samples. The cost function is reduced by checking 
the input and output pairs of known data and varying the weights accordingly to minimize the cost function. 
Thus, the goal of the cost function is to provide a metric to measure increases or decreases in the performance 
of the network. When the cost function reduces to a tolerance defined by the user, the algorithm is said 
to be converged. The basic form of the cost function is 

C(w, b, x, y) (ŵ.Ż) 

where w are the weights of the NN, b is the bias, x is the input to the network and y are the 
expected outputs in vector forms. 

There have been many proposed loss functions with different properties. All of these have the 
following two important attributes (Nielsen ŵųŴŸ) (Papalambros and Wilde ŵųųų): 

• The cost function should be a scalar value representing the error of n training samples with respect 
to the data. This is important to compute the derivative of the cost function, which is needed to 
minimize the cost function. 

• The input-output layers should remain unchanged throughout the optimization process, and the 
cost function should only be calculated from the outputs of the network. 

Quadratic Cost Function 

The quadratic cost function, more commonly known as mean-squared error (MSE), is often used 
in statistical problems. MSE is the minimum average squared distance value between the estimated 
values and the original values. The NN tries to minimize the cost function to achieve better performance 
based on predicted values of output and the original outputs from the training data. However, MSE does 
not perform well in combination with some activation functions, such as the sigmoid function (Gulikers 
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ŵųŴŻ). Thus, MSE is used for regression problems. MSE is written as: 

X 
CMSE (w, b, x, y) =

1 
(y ∗ − y)2 (ŵ.ż) 

n 
i=1 

where n is the number of training points and y ∗ is the estimated values from the model in vector 
form. 

Cross Entropy Cost Function 

The cross-entropy cost function enhances the performance of the NN. Cross-entropy reduces the 
effect of slow learning, which can occur due to saturation using the MSE; i.e., slight differences between 
the expected and original values result in large MSE values. Cross-entropy is defined as: 

X 
CCE (w, b, x, y) = − ∗ [y ln y + (1 − y) ln(1 − y ∗ )] (ŵ.Ŵų) 

n 

Lų Cost Function 

The LŴ cost function or mean absolute error (MAE) is the absolute difference between the estimated 
value and the original value. It has the same properties as MSE in terms of saturation causing slow learning, 
but it is more reliable as the errors are not as large as in MSE. The LŴ cost function is written as: 

X 
CMAE (w, b, x, y) =

1 
(y ∗ − y) (ŵ.ŴŴ) 

n 
i=1 

Ŵ.ŷ.Ŵ. Back Propagation 

Outputs of the NN are predicted from the inputs during the feed-forward pass. These predicted 
outputs and the original training outputs are used to calculate the cost function. Back propagation is used 
to adjust the weights of the layers to minimize the loss function. 

Back propagation uses the chain-rule to estimate this change in the cost function due to the 
estimates for the weights. For example, referring to figure ŵ.Ŵŷ, back propagation calculates the change 
in the cost function due to the weight assigned to the second neuron in the second layer (w(2)); i.e. to 12 

estimate the change of the cost function C with respect to w(2), back propagation calculates the change 12 
(3) (3)of C with respect to the output h , the change of h with respect to activation function in the second 1 1 

(2) (2) (2)layer second neuron z , and the change of z to w12 . To calculate the change in the cost function with 1 1 

respect to the weight of one neuron, w(2), these results are multiplied based on the chain rule: 12 
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(3) (2)
∂C ∂C ∂h ∂z 1 1= (ŵ.Ŵŵ) 

(2) (3) (2) (2)
∂w ∂h ∂z ∂w 12 1 1 12 

The last term of Equation ŵ.Ŵŵ is: 

(3) (2) (2) (2) (2) (2) (2) (2)
= g(h w + h w + h w + b )hw,b(x) = h1 1 11 2 12 3 13 1 

(3) (2)
= g(z )hw,b(x) = h1 1 

(2) (2) (2) (2) (2)
z = h1w + h3w + b1 11 +h2w12 13 1 

(2)
∂z1 = h2(2)
∂w12 

The second to last term of Equation ŵ.Ŵŵ depends on the activation function used in the layer of 
the NN. Assuming that the sigmoid activation function is used: 

(3)
∂h ′ 1 = g (z) = g(z)(1 − g(z))

(2)
∂z1 

The first term of Equation ŵ.Ŵŵ is the derivative of the cost function with respect to the output. 
Assuming we use the quadratic function or MSE as the cost function (Equation ŵ.ż) and, for simplicity, 
using n = ŵ: 

1 (3) (2)
C(w, b, x, y) = ∥y1 − h (z )∥2 

1 12 
1(3) (2) 2Let u = ∥y1 − h (z )∥ so C = u1 1 2 

∂C (3)
= −(y1 − h )1(3)

∂h1 

These three terms are multiplied to give the change of cost function with respect to the weight of 
the second neuron in the second hidden layer. The above calculations can be simplified by defining δ as a 
new term: 

′(nl) (nl) (nl)δ = −(yi − h )g (z )i i i 
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i 

where i is the node number of the output layer and for the example case of figure ŵ.Ŵŷ, is always 
Ŵ. h(nl) is the output from the final layer. 

The cost function in terms of δ and the output of its layer is: 

∂C (l) (nl) 
(l) 

= hj δi (ŵ.ŴŶ) 
∂wij 

The δ term needs to be back propagated to ultimately connect the weight of each neuron in a 
layer of the NN to the cost function. A similar process is used to back propagate the bias. Equation ŵ.ŴŶ is 
then used in an optimization procedure, typically gradient descent, to update new weights and biases for 
the NN based on the minimization of the cost function. The new weights and biases for the NN are: 

(l) (l) ∂C(w, b) 
wij = wij − 

(l) (ŵ.Ŵŷ) 
∂wij 

(l) (l) ∂C(w, b)
bi = bi − 

(l) (ŵ.ŴŸ) 
∂bi 

Ŵ.ŷ.ŵ. Optimization of Neural Network 

The weight and biases are optimized based on the loss function so that the network learns the 
patterns from the input and output pairs. The main function of optimization is to minimize the loss function 
for its weights and biases. For example, Equation ŵ.ŴŹ is based on optimization of the weights using gradient 
descent. 

min C(w, b, x, y) 
w 

while ∥∇w∥ > tolerance (ŵ.ŴŹ) 

w =w − α∇w 

where α is the learning rate, i.e., the step size taken towards convergence. 

The optimization problem tries to find the weights and biases so that the cost function of the 
network is at a local minimum. Note, the local minimum is sometimes the near-best solution, as finding 
the global minimum can be hard and at times unnecessary (Goodfellow et al. ŵųŴŹ). This is done by moving 
in the opposite direction of the slope from the current point by α (figure ŵ.ŴŸ). 
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Figure ŵ.ŴŸ: Gradient descent algorithm (M ŵųŵų) 

The optimization problem is convex for a single node NN. This means that all the local minima 
are also the global minima, and there is only one solution. But as more neurons are added to the NN, 
the optimization problem becomes non-convex, and there can be multiple minima, also known as saddle 
points. As the gradient tends towards zero near these saddle points, the gradient descent algorithm can 
get stuck in one of these local minimas and result in sub-optimal weights and biases (figure ŵ.ŴŹ). 

Figure ŵ.ŴŹ: (a) Convex, (b) Non-convex (Zadeh ŵųŴŹ) 
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There is no straightforward solution to selecting a local minimum based on the non-convex nature 
of NNs. To enhance training, the following strategies have been proposed: [i] stochastic gradient descent 
optimization, [ii] gradient descent optimization with momentum, [iii] Adam optimization, [iv] dropout, 
[v] data and batch normalization, and [vi] regularization. Some of these techniques are related to the 
optimization of the gradient descent algorithm,whereas others are related to the regularization of data 
and the network. 

Stochastic Gradient Descent 

In gradient descent, when the NN has many nodes in the hidden layers, the gradient ∇W in 
Equation ŵ.ŴŹ can be computationally expensive and take a significant amount of time to compute. The 
gradient computation makes the NN slow to optimize the weights and bias for a batch, which is the entire 
training set. Also, the network can get stuck near a saddle point or at a non-optimum local minimum. 

Additionally, computing the gradient over a batch can lead to memory issues, as the gradients 
taken for a large network can be very large. 

These problems can be mitigated by using mini-batches,where gradient descent is calculated over 
smaller portions of the data in an optimization algorithm known as a stochastic mini-batch approximation 
or stochastic gradient descent (Equation ŵ.Ŵź). The NN learns by re-arranging the inputs randomly to 
make mini-batches. An iteration is defined as the computation of the gradient over a mini-batch. The 
process of randomly selecting different mini-batches from the training data is then repeated several 
times. Each time an input example is looped through the NN, one cycle through the entire training dataset, 
a number of iteration (epoch) is recorded (figure ŵ.Ŵź). Many epochs may be required to optimize the NN. 

nX 
min C(f(xi, w), yi) 
w 

i=1 (ŵ.Ŵź) nX ∂C(f(xi, w), yi)∇w 
∂w 

i=1 

Momentum 

The weights and bias of the network are updated by minimizing the loss; e.g., using the gradient 
descent algorithm. For the gradient descent algorithm to converge, the learning rate α in Equation ŵ.ŴŹ 
needs to be small enough. However, learning rates too small can result in slow convergence. Generally, 
a large learning rate is used initially. If the algorithm fails, the learning rate is decreased by a factor of Ŵų, 
and so on. 

Momentum can be used to enhance the speed of learning (Moreira and Fiesler ŴżżŸ). Momentum 
includes the gradient of the function in the previous step as a part of the update to the next step. 
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Figure ŵ.Ŵź: Epoch vs mini-batch 

Algorithm Ŵ: Gradient Descent with Momentum 

INITIALIZATION: D0 = ų 
while ∥∇f(w)∥ > tolerance do: 

Calculate Dt+1 = µDt − αGt 

Wt+1 = Wt + Dt+1 

end while. 
where: α is the learning rate, µ is momentum, W are the weights 

Momentum decreases the time required to reach convergence, by giving better results as it uses 
previous information to find local minima; see figure ŵ.ŴŻ. Values representing the contribution of momentum 
(µ) ranges from ų to Ŵ.ų and are typically between ų.Ź to ų.Ż. If the momentum is equal to zero, then the 
algorithm collapses to gradient descent without momentum. 

Adam 

Adam (adaptive moment estimation) is another commonly used optimization technique. Adam 
combines the advantages of two other optimization techniques in gradient descent, namely AdaGrad and 
RMSprop (Kingma and Ba ŵųŴŷ) (describing these is outside the scope of this report). Adam stores the 
exponentially decaying average of the past squared gradients and past gradients. This allows Adam to 
behave like a heavy ball with friction (Heusel et al. ŵųŴź), allowing the optimization algorithm to shoot 
over non-optimal local minima to find more optimal minima. For example, figure ŵ.Ŵż shows the heavy 
ball with the friction concept of Adam,where it shoots over θ+ and settles at minimum θ∗ . 
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Figure ŵ.ŴŻ: Gradient descent with momentum. Shifting to a better minimum 

Figure ŵ.Ŵż: Adam: heavy ball with friction 
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Dropout 

A deep network can sometimes cause problems as it can overfit the data. Overfitting is when the 
NN learns the trends in the training set but, when given new data points, is unable to generalize those 
trends to new data. In contrast, underfitting occurs when the network is unable to learn the general 
trends in the training data set. 

Overcoming underfitting and overfitting requires a trade-off between bias and variance. A bias 
is a difference between the average prediction of the model and the correct value. A high bias indicates 
little attention to data (high error). Variance is the variability and spread in the model. A high variance 
means the generalization of the model. Figure ŵ.ŵų shows the underfitting and overfitting zones for high 
bias and high variance and how they affect the training and test error of the NN. 

Figure ŵ.ŵų: Underfitting vs overfitting (Goodfellow et al. ŵųŴŹ) 

Dropout can alleviate the overfitting problem by ignoring neurons in the NN if they become co-dependent 
during the training phase. The NN then becomes smaller, and more appropriate weights can be assigned 
to the remaining neurons, while neurons that might contain outliers can be neglected (figure ŵ.ŵŴ). 

Data and Batch Normalization 

Training of the NN depends on data structuring. If the data are unscaled, one value of the inputs 
can dominate the other values, and the NN will assign more weight to this input value. The gradient 
would “explode” in the gradient descent algorithm, as one weight would be significantly larger than the 
other weights, causing performance issues in the NN. Therefore, normalizing the data so that all points 
are of a similar range/scale can ensure that all inputs are treated similarly. Normalization also reduces the 
training phase of the NN. 

Sometimes, even after normalizing the data, one of the weights of the NN can still become large. 
In very deep NNs, which have several layers and functions, assigning or updating weights to each layer 

ŵŶ 



Figure ŵ.ŵŴ: Dropout to prevent overfitting (Srivastava et al. ŵųŴŷ) 

is done simultaneously. The updates assume that the functions remain constant, but in the NN these 
functions are changed simultaneously, which can cause issues (Goodfellow et al. ŵųŴŹ). Batch normalization 
can mitigate these issues. 

Batch normalization re-parameterizes the NN. The output from the activation function is normalized. 
Batch normalization is done by multiplying the output by an arbitrary parameter g and adding arbitrary 
parameter b. This procedure sets a new mean and standard deviation for the data and is optimized during 
the training phase. 

Regularization 

Another way to address overfitting is to introduce a regularizer to the cost function. This regularizer 
term penalizes the loss function to aid in generalization. An example of a regularizer in the case of weight 
decay which is added to Equation ŵ.ż is: 

X1 TCMSE (w, b, x, y) = (y ∗ − y)2 + λw w) (ŵ.ŴŻ) n 
i=1 

The additional regularizer term at the end of Equation ŵ.ŴŻ is then minimized, as well as the MSE 
cost function, by the NN during learning. This approach of adding a regularizer to the cost function is 
known as regularization (Goodfellow et al. ŵųŴŹ). 
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Ŵ.ŷ.Ŷ. Training NN Using Gradient Descent 

The following algorithm summarizes the steps of training a NN by using the gradient descent 
algorithm. 

Algorithm ŵ: Training NN Using Gradient Descent 

INITIALIZATION: Randomize values of weights for each layer in the NN 
while iterations < iteration limit do: 

Set ∆w and ∆b to random values 
For samples Ŵ to m: 

a. Perform a feed forward pass through all the layers. Store the 
activation function outputs h(l) 

(nl)b. Calculate the δj value for the output layer 
c. Use back propagation to calculate the δ(l) values for layers ŵ to 
(n − 1) 

d. Update the ∆W and ∆b for each layer 
Perform a gradient descent step using� � 

(l) (l) − α 1 w = w ∆w� m � 
b(l) 1 = b(l) − α ∆b m 

end while. 
where: α is the learning rate, m are training samples. 
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Ŷ. STATIC MODEL WITH CONSTANT STIFFNESS 

Ŷ.Ŵ. Introduction 

Engineering applications for ML include solving partial differential equations (Sirignano and Spiliopoulos 
ŵųŴŻ), fluid dynamic problems (Raissi, Yazdani, et al. ŵųŴŻ) (Sanchez-Gonzalez et al. ŵųŵų) (White et al. 
ŵųŴżb), emulating physical systems (Beucler et al. ŵųŴż), and structural health monitoring (Flah et al. 
ŵųŵŴ), among others. However, ML algorithms do not use scientific theory but instead are data-driven 
and find a program based on the pattern of mapped inputs to the outputs. In contrast, traditional programs 
or physics-informed models in numerical methods often are based on scientific theory (figure Ŷ.Ŵ). To 
enhance the reliability and robustness of the ML results, physical equations can be introduced into the 
ML algorithm, referred to as physics-informed neural networks (PINN) (Raissi, Perdikaris, et al. ŵųŴż), 
physics guided neural networks (PGNN) (Karpatne et al. ŵųŴź) (Figure Ŷ.Ŵ), or scientific computational with 
artificial neural networks (SciANN) (Haghighat and Juanes ŵųŵų). 

Figure Ŷ.Ŵ: Physics-informed neural networks 

The literature showed that there are many ways of incorporating physics into the NN. The most 
common method is to introduce the residual into the loss function of the NN algorithm. The addition of 
the residual into the loss function helps the learned model to be consistent with the physical equations 
of the problem. NN loss-based physics models can also better extrapolate and generalize outside the 
original data domain. 

The applications of NN loss-based physics-informed models include solving partial differential 
equations (PDEs) (Y. Zhu et al. ŵųŴż) (Geneva and Zabaras ŵųŵų), discovering governing equations (Loiseau 
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and Brunton ŵųŴŻ) (Doan et al. ŵųŴż), inverse modelling (Raissi, Yazdani, et al. ŵųŴŻ) (Kahana et al. ŵųŵų), 
parameterization (Linfeng Zhang et al. ŵųŴŻ) (Beucler et al. ŵųŴż), down-scaling (Esmaeilzadeh et al. ŵųŵų) 
(Bode et al. ŵųŵŴ), uncertainty quantification (Y. Yang and Perdikaris ŵųŴŻ) (Y. Yang and Perdikaris ŵųŴż) 
(Y. Zhu et al. ŵųŴż) (Geneva and Zabaras ŵųŵų) (Karumuri et al. ŵųŵų) (L. Yang et al. ŵųŴż), and generative 
models (J.-L. Wu et al. ŵųŵų) (Shah et al. ŵųŴż). 

Another type of NN physics-informed method is referred to as hybrid physics NN models. Hybrid 
physics NN models combine the physics-informed model (such as a finite element model) with an NN 
model. Hybrid physics NN models are often used for residual modelling (Forssell and Lindskog Ŵżżź) (Thompson 
and Kramer Ŵżżŷ) (San and Maulik ŵųŴŻ) (Kani and Elsheikh ŵųŴź), in which the output of the physic-based 
model is used as input to an NN model (Karpatne et al. ŵųŴź), replacing part of physic-based model with 
the NN (Parish and Duraisamy ŵųŴŹ) (Liang Zhang et al. ŵųŴż); e.g., combining results from the physics 
models and NN model (Chen et al. ŵųŴŻ) (Paolucci et al. ŵųŴŻ), as well as using the NN to refine the inversion 
models obtained from physics models in inverse modelling (Bubba et al. ŵųŴż) (Jin et al. ŵųŴź) (Senouf 
et al. ŵųŴż) (Ulyanov et al. ŵųŴŻ). 

Table Ŷ.Ŵ summarizes different physics-informed ML methods, along with the benefits of using 
such methods, such as increased ML model performance, interpretability, accuracy, and generalization to 
other data sets. It also indicates when they are generally applicable (usage); e.g., when there is a known 
physical equation, intermediate physical variables, previously trained weights, and whether a physics 
model, such as finite element model, is available. 

For this project, ML algorithms were used to overcome challenges with traditional numerical 
methods, such as computational cost and potential alleviation of convergence issues. In this chapter, the 
feed-forward pass of an NN for a static problem is presented using an SDOF with a single stiffness value. 
The physics-informed NN methods discussed in this chapter include the physics-informed loss function 
and the hybrid physics NN model. To learn the solution to a static problem, weight initialization of the NN 
and data normalization can be very important and these were explored based on the NN performance. 
The best NN architecture was identified from different hyperparameters, and the results and conclusions 
are presented for the static problem at the end of the chapter. 

Ŷ.ŵ. Static Model Description 

In this study, a static load, F , was applied to a linear-elastic spring with stiffness, k, to estimate 
the displacement, x, using an NN; the spring model is shown in figure Ŷ.ŵ. A linear-elastic model for static 
loading can be calculated by using Hooke’s law: 

F = kx (Ŷ.Ŵ) 

The NN inputs were the load, F , and stiffness k, and the output of the NN was the displacement, 
x, of the spring. A constant stiffness of k = 1 was initially selected to make the load in Equation Ŷ.Ŵ equal 
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Table Ŷ.Ŵ: Different types of ML methods (Willard et al. ŵųŵų) 

Physics-informed ML Method Benefit Usage 

Loss Function 
Improved accuracy, 

Improved generalization, 
Reduced number of iterations 

Known physical equation 

Architecture 
Improved interpretability, 
Improved accuracy, 

Improved generalization 

Hard constraints, 
or intermediate physical variables 

Initialization 
Reduced number of iterations 

Improved accuracy 
Similar trained ML model available 

used for different purposes 

Hybrid Improved accuracy Physics model already available 

Figure Ŷ.ŵ: Linear-elastic spring 

to the displacement, or F = x, to gain insight into how the NN performed with a simple example. 

Ŷ.Ŷ. Neural Network Estimation 

The NN is trained by updating the weights and bias to estimate the solution of a problem. For a 
single hidden layer with two neurons, as shown in figure Ŷ.Ŷ, the feedforward NN without bias equation 
is: 

(1) (1)a1 = w F + w k11 12 
(1) (1)a2 = w F + w k21 22 

For an activation function g(.): 
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(1) (1)a1 = g(w F + w k)11 12 
(1) (1)a2 = g(w F + w k)21 22 

(2) (2)ex = w a1 + w a211 12 

(2) (1) (1) (2) (1) (1)ex = w F + w k) + w F + w k) (Ŷ.ŵ)
11 g(w11 12 12 g(w21 22 

(k)where wij are the weights and i refers to node in the connection layer, j refers to the node to 
the originating layer, and k refers to the number of layers. xe refers to the estimate from the NN. 

Figure Ŷ.Ŷ: NN with single hidden layer, two neurons and no bias 

Hooke’s law in Equation Ŷ.Ŵ is of a linear form, but Equation Ŷ.ŵ using the NN represents a nonlinear 
form. If the NN is used without a nonlinear, i.e., linear, activation function, then Equation Ŷ.ŵ becomes 

(2) (1) (2) (1) (2) (1) (2) (1)ex = w F + w k + w F + w k (Ŷ.Ŷ)
11 w11 11 w12 12 w21 12 w22 

which simplifies to: 

(2) (1) (2) (1) (2) (1) (2) (1)F(w + w ) = ex − k(w + w ) (Ŷ.ŷ) 
11 w11 12 w21 11 w12 12 w22 

For the simple example, when Equation k = 1 in Ŷ.Ŵ and F = x, the load weight terms should 
add to unity, and the stiffness weight terms should add to zero. 
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Ŷ.ŷ. Weight Initialization 

To initiate the learning process, two different weight initializations were explored, including Xavier 
and He weight initializations. Weights and bias initialization are important for training an NN. Normally, 
weights and bias are initialized as small random values, but these random values can be problematic as 
the NN can get stuck in non-optimal minima, and the algorithm can fail to find the best solution for the 
problem (Goodfellow et al. ŵųŴŹ). 

ŵ.Ŷ.ų. Xavier Weight Initialization 

There are many different activation functions that can be used to introduce nonlinearity in the 
NN. These activation functions have unique properties, that can change the performance of the NN. The 
weight initialization introduced for sigmoid and tanh activation functions is known as Xavier or Glorot 
initialization (Glorot and Bengio ŵųŴų). 

The Xavier weight initialization assumes a uniform distribution for random numbers between the 
range of [−1/sqrt(n + m), 1/sqrt(n + m)], where n is the number of input neurons and m is the number 
of output neurons. 

ŵ.Ŷ.Ŵ. He Weight Initialization 

Another type of weight initialization is the He initialization technique introduced by Kaiming He 
(He et al. ŵųŴŸ). In his study, He stated that there is no evidence of ”clear superiority” of the He weight 
initialization over the Xavier initialization, but the He initialization is often used for ReLU activation function. 

The He weight initialization assumes a uniform distribution having a mean of zero and a standard 
deviation of sqrt(2/n + m). 

Ŷ.Ÿ. Data Normalization 

Several methods of normalizing the data were explored. If one input value is too big compared 
to other input values in the data, it will be assigned a higher weight value and dominate the results. The 
gradient descent algorithm is: 

(l) (l) ∂C(w,b)w = w − αij ij (l)
∂wij 

∂C (l) (nl)= h δ(l) j i∂wij 

(nl) (nl) (nl)δi = −(yi − h )g 
′ 
(zii ) 
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which can be rewritten as: 

(l) (l) (l) (nl) (nl)w = w − α[h − (yi − h )g 
′ 
(z )] (Ŷ.Ÿ)

ij ij j i i 

The presence of h(nl) in Equation Ŷ.Ÿ shows that the inputs affect the step size α in the gradient i 

descent algorithm. Normalizing the inputs on the same scale helps the gradient descent algorithm to 
converge quickly. 

In this study, Min-Max normalization was utilized. Min-Max normalization or feature scaling is a 
method to normalize the data so that the data set has a range between Ŵ.ų and ŵ.ų. 

′ Inputs − min(Input)
Inputs = + 1 (Ŷ.Ź) 

max(Input) − min(Input) 

For the k = 1 problem in Equation Ŷ.Ŵ, the following normalization techniques were studied: 

Ŵ. Normalizing the load, F , only by Min-Max normalization. 

ŵ. Normalizing the load, F , and displacement, x, by Min-Max normalization 

Ŷ.Ź. Physics Learning NN 

The NN was trained to satisfy Hooke’s law by using the normalized data from Equation Ŷ.Ź. The 
physical equation in Equation Ŷ.Ŵ was incorporated into the learning by adding the residual calculated 
from OpenSees into the NN loss function. The inputs (F and k) are given to the NN to estimate the output 
(x), which is then given to OpenSees to calculate the unbalance force and residual. The residual is added 
to the loss function and then backpropagated upon to update the weights of the model (figure Ŷ.ŷ). 

Ŵ. Soft constraints: The loss function is minimized to improve the quality of the NN rather than obtain 
a certain precision. There are two limitations to loss functions with soft constraints. First, there is 
no guarantee that the constraints will be satisfied. Second, it is necessary to choose the loss terms 
in the loss function wisely according to their relative importance to the problem (Márquez-Neila 
et al. ŵųŴź). 

ŵ. Hard constraints: The loss function is minimized to be near-equal to the machine precision if the 
solution to the problem exists (Márquez-Neila et al. ŵųŴź). There are limitations of having loss 
functions with hard constraints as the NN often needs to learn millions of free parameters. This 
can overwhelm the optimization problem (Pathak et al. ŵųŴŸ). 
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Figure Ŷ.ŷ: Physics neural network 

Ŷ. Regularizer: The residual can be added as a penalty to the loss function. This makes the physics 
term a regularizer which is minimized by the NN. 

Herein, physics was embedded into the loss function during the training process by using soft 
constraints with either the data or the residual in the loss function. Two different types of loss functions 
were utilized: 

• Residual loss R, using the unbalance force vector, Pu, for Equation Ŷ.Ŵ 

Pu = F − kex (Ŷ.ź) 

Loss = LR = (Pu)
T(Pu) (Ŷ.Ż) 

• Energy loss, using the unbalance force vector and differences between the output displacements 
from ML, x, and the training data displacements from OpenSees, xe, defined as: 
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Loss = LE = |(ex − x)T(Pu)| (Ŷ.ż) 

Unlike residual loss, energy loss minimizes the error between both the displacements and unbalance 
forces. 

Ŷ.ź. Neural Network Architecture 

Several NN architectures were explored to determine the best number of neurons, hidden layers, 
and activation functions. A good NN architecture design is necessary to have good performance. As discussed 
in Chapter ŵ, an NN becomes more flexible when more hidden layers are added to the network, but too 
many hidden layers can cause the NN to overfit the data. Once an NN architecture was selected, loss 
functions including the residual were utilized. 

ŵ.Ź.ų. One Layer without Bias Neural Network 

One hidden layer NN without bias was modeled with the normalization techniques for k = 1 
and without the physics loss functions. Figure Ŷ.Ŷ shows a NN with a single hidden layer, two neurons, 
and no bias with a learning rate of Ŵe-Ŷ and an Adam optimizer. Table Ŷ.ŵ shows the performance of 
the NN for different normalization techniques. Training was discontinued after a maximum number of 
Ÿų,ųųų epochs. Not all NNs converged within the Ÿų,ųųų epochs. Herein, convergence was defined by a 
tolerance of Ŵe-Ŵŵ. 

Table Ŷ.ŵ: Neural network with single hidden layer and no bias 

Activation function Data normalization type MSE test error Iterations 

tanh 
ReLU 
Linear 
tanh 
ReLU 
Linear 

Normalizing Load 
Normalizing Load 
Normalizing Load 

Normalizing Load + Displacement 
Normalizing Load + Displacement 
Normalizing Load + Displacement 

Ŵ.ŵųŹeŴų 
Ŵ.ŴŶźe-ŵŴ 
Ŵ.ŷŸųe-ŵŴ 
Ŵ.ŶŷŴeŴų 
Ż.źŷŸe-ųŻ 
ŵ.Ŵųźe-Ŵŵ 

Ÿųųųų 
ŴŶŻų 
żŻŶ 
Ÿųųųų 
ŴŹ 
ŴŸ 

The normalization techniques converged with the ReLU and linear activation function. The tanh 
activation function did not converge, because of the nonlinearity introduced into Equation Ŷ.ŵ. Figure ŵ.Ź 
in Chapter ŵ also shows that tanh is not suitable for a linear function such as F = x. 
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ŵ.Ź.Ŵ. Two Layer without Bias Neural Network 

A two hidden layer NN without bias was modeled for each normalization techniques without 
physics. The two hidden layers had two neurons and no bias, with a learning rate of Ŵe-Ŷ and an Adam 
optimizer. Table Ŷ.Ŷ shows the performance of the NN for different normalization techniques 

Table Ŷ.Ŷ: Neural network with two hidden layers and no bias 

Activation function Data normalization type MSE test error Iterations 

tanh 
ReLU 
Linear 
tanh 
ReLU 
Linear 

Normalizing Load 
Normalizing Load 
Normalizing Load 

Normalizing Load + Displacement 
Normalizing Load + Displacement 
Normalizing Load + Displacement 

Ŵ.ŵųŹeŴų 
Ÿ.żųŵe-ŵų 
ŵ.ŸŴźe-ŵų 
ŷųżŷ 

Ź.żŸźe-Ŵų 
Ŵ.ŷŵŷe-ŴŴ 

Ÿųųųų 
ŴŻŻ 
ŴŸŵ 

Ÿųųųų 
Ŵŷ 
ŴŶ 

The two layers without bias became more flexible and fewer iterations were needed for convergence 
compared to the one layer case. The results for the normalization type followed a similar trend similar to 
that of the one layer case, with ReLU and linear activation functions outperforming tanh. 

ŵ.Ź.ŵ. Two Layer with Bias Neural Network 

Figure Ŷ.Ÿ shows two hidden layers with bias with two neurons per layer. Table Ŷ.ŷ and Table Ŷ.Ÿ 
show the results for a two hidden layer NN with bias and two neurons, with and without the residual. 
Without and with physics, non-convergence was considered at Ÿų,ųųų and Ÿ,ųųų epochs, respectively. 
The learning rate was Ŵe-Ŷ with an Adam optimizer. 

Table Ŷ.ŷ: Neural network with two hidden layers and bias 

Activation function Data normalization type MSE test error Iterations 

tanh 
ReLU 
Linear 
tanh 
ReLU 
Linear 

Normalizing Load 
Normalizing Load 
Normalizing Load 

Normalizing Load + Displacement 
Normalizing Load + Displacement 
Normalizing Load + Displacement 

Ŵ.ŵųŹeŴų 
Ŵ.żŷźe-ŵŴ 
Ż.źżże-ŵŴ 
ŹŴŸŻ 

Ŷ.źŵŻe-ŵų 
Ŵ.ŻŻże-Ŵż 

Ÿųųųų 
Żŷ 
ŸŹ 

Ÿųųųų 
ź 
ŷ 

Of the architectures studied, two layers with bias resulted in the least number of iterations for 
convergence. ReLU and linear outperformed tanh in every NN architecture for k = Ŵ, for all the normalization 
techniques with and without physics. The residual and energy loss functions both took the same number 
of epochs to converge for the ReLU and tanh activation functions. The normalization technique, which 
included normalizing the load and displacement, did not perform well with the energy loss, as the unbalance 
force and the error had different units. For the data normalized case, the unbalance force was in the 
original domain (not normalized) for OpenSees to analyze the results, whereas displacement values were 
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Figure Ŷ.Ÿ: NN with two hidden layers, two neurons, and bias 

Table Ŷ.Ÿ: Neural network with two hidden layers and bias with physics loss function 

Physics loss 
function 

Activation 
function 

Data normalization 
type 

MSE 
test error Iterations 

LR tanh Normalizing Load ŵ.źŸŹeż Ÿųųų 
LR ReLU Normalizing Load Ż.ŹŸŶe-ŵŵ ŻŸ 
LR Linear Normalizing Load ŷ.Ŷŷŷe-ŵŴ ŸŹ 
LE tanh Normalizing Load ŵ.źŸŹeż Ÿųųų 
LE ReLU Normalizing Load Ŵ.Żżųe-ŵŴ ŻŸ 
LE Linear Normalizing Load ŷ.Ŷŷŷe-ŵŴ ŸŹ 
LR tanh Normalizing Load + Displacement ŵ.źŸŹeż Ÿųųų 
LR ReLU Normalizing Load + Displacement ŵ.ųżŷe-ŵŴ ŻŸ 
LR Linear Normalizing Load + Displacement ŷ.Ŷŷŷe-ŵŴ ŸŹ 
LE tanh Normalizing Load + Displacement Ź.żŶźeż Ÿųųų 
LE ReLU Normalizing Load + Displacement Ź.żŶźeż Ÿųųų 
LE Linear Normalizing Load + Displacement Ź.żŶźeż Ÿųųų 

normalized. The residual loss function did not have this problem because it involved only the unbalance 
force from OpenSees. 

Ŷ.Ż. Hyperparameter Tuning 

The effects of batch size and the number of neurons in the hidden layers were studied to select 
the best-trained model. The learning rate was Ŵe-Ŷ with the activation function ReLU with load normalization. 
Figure Ŷ.Ź shows that increasing the number of neurons in the first hidden layer from ŵ to Ŵų resulted in a 
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decreasing number of iterations. For one layer, the decrease in the number of iterations was evident, but 
for the two layers with and without bias the number of iterations decreased only slightly. The flexibility of 
the network reduced the needed number of iterations with changes in the NN architecture. The number 
of iterations was also reduced with an increasing number of neurons in the second hidden layer (figure 
Ŷ.ź), while the first layer hidden neurons were kept constant (two neurons). 

Figure Ŷ.Ź: Number of neurons in first hidden layer vs number of iterations 

Figure Ŷ.ź: Number of neurons in second hidden layer vs number of iterations 

Figure Ŷ.Ż shows the effect of batch size on the number of iterations for different NN architectures. 
Training the NN with a small batch size made the NN converge faster, as there were more updates to the 
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Figure Ŷ.Ż: Batch size vs number of iterations 

NN and the weights updated more frequently. 

Ŷ.ż. Results 

The neural network architecture with two hidden layers with bias having two neurons in each 
layer had the best performance with a static SDOF and k = 1. The normalization technique resulting in 
the smallest number of iterations was normalizing load, F , and displacement, x, by the Min-Max normalization. 
The activation function that performed the best was the linear function, which best fit Hooke’s Law, followed 
by ReLU. Figure Ŷ.ż shows the results of the actual value and the estimated predicted value from the NN. 

The results were linear when k = 1, and the NN well estimated the values from OpenSees. These 
results were trained with a learning rate of Ŵe-Ŷ and a batch size of ŴŹ with the Adam optimizer. 

The convergence of the NN was smooth (Figure Ŷ.Ŵų) for both normalization types. The NN with 
the gradient descent algorithm and a learning rate of Ŵe-Ŷ resulted in convergence issues. The Adam 
algorithm was found to be more stable than the gradient descent algorithm for this problem. A very small 
learning rate of Ŵe-Ż was needed for the gradient descent algorithm to reach convergence. 

Regardless of whether the loss function used physics, the NNs performed similarly (table Ŷ.ŷ). 
The residual and energy loss functions converged for the same number of iterations as that without physics 
for the ReLU and linear activation function. The physics-informed loss functions did not have a significant 
effect on convergence because the dataset was linear, and the NN could easily identify patterns with and 
without physics. 
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Figure Ŷ.ż: Results of the NN for static problem when k = 1 

Figure Ŷ.Ŵų: MSE error vs number of iterations. (a) Normalizing load and displacement, (b) Normalizing 
load 

Ŷ.Ŵų. Extrapolation 

The performance of the NN was checked by extrapolating the dataset and using the NN model to 
estimate values far away from the original training dataset. The ReLU activation function performed in a 
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manner similar to that of the linear activation function, as shown in table Ŷ.ŵ, table Ŷ.Ŷ, and table Ŷ.ŷ, but 
it failed to estimate negative values of displacement (figure Ŷ.ŴŴ). The ReLU activation function does not 
estimate negative values because it is a piecewise linear activation function that is zero when the output 
is negative and linear when the output is positive. In contrast, the linear activation function estimates 
positive and negative values (figure Ŷ.Ŵŵ), as it best matches Hooke’s law. 

Figure Ŷ.ŴŴ: ReLU extrapolation 

Figure Ŷ.Ŵŵ: Linear extrapolation 
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Ŷ.ŴŴ. Conclusions 

An NN was trained by using an elastic SDOF with a load, F , and a stiffness, k, for displacement, x. 
The stiffness of the model was assumed to be constant. Physics was included in the loss function of the 
NN as a soft constraint and backpropagated to update the loss function. Several types of normalization 
techniques were used to assess the performance of the NN. Different types of NN architectures with 
different numbers of neurons and activation functions were studied to select the one most suited to this 
problem. 

The performance of the NN was best when the ReLU and linear activation functions were used 
because Hooke’s law is linear. The ReLU and linear activation functions performed similarly when the 
testing set had positive values, but ReLU failed to perform when the testing set had negative values because 
ReLU returns zero on the negative branch. Tanh, a nonlinear activation function, did not converge due to 
the linear nature of the dataset. 

Normalizing the inputs and the outputs sped up the NN, with fewer iterations needed for convergence. 
Physics was introduced into the NN by embedding a residual extracted from OpenSees into the loss function. 
The performance of the NN changed a little by incorporating physics into the NN. Both the physics residual 
and energy loss functions performed similarly with k = 1. 

This study was kept relatively simple to select an appropriate NN architecture. The structural 
model was for an SDOF with constant stiffness k = 1 and a linear force-displacement relationship. The 
next chapter investigates the use of an NN with variable stiffness with and without physics, which can be 
extended for both single- and multiple-degree-of-freedom-systems and nonlinear response in the future. 
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ŷ. STATIC MODEL WITH VARYING STIFFNESS 

ŷ.Ŵ. Introduction 

Neural networks (NN) are data-driven in nature, as they rely only on the available dataset values 
during training to update the weights of the NN model. The NN maps the inputs to the outputs, calculates 
the loss, and then updates the weights of the network to reduce the loss function. Thus, the underlying 
physical equations can be disregarded by the NN when a solution for the problem is estimated. Since 
the NN does not use scientific theory, it can be limited to performing well only within the range of the 
training dataset. Therefore, a physics-informed NN model that uses both scientific theory and is based on 
data-driven concepts can be advantageous (figure Ŷ.Ŵ). 

In this project, the loss function of the NN was modified by adding the residual, which penalizes 
the NN if the governing equations are not satisfied. Embedding the residual into the loss function helps 
in minimizing overfitting of the data and makes the NN more reliable, and it can help in reducing the 
number of iterations for convergence during training (Willard et al. ŵųŵų). 

This chapter extends the previous chapter by using a static model with variable stiffness. The 
feedforward pass with the variable stiffness problem was compared with the physical equations for the 
static model, and it was inferred that the NN could not learn the physical equation in its original form. 
The form of the physical equation was changed by applying log normalization to the data and different 
loss function performance was evaluated in a manner similar to that described in the previous chapter. 

ŷ.ŵ. Static Model Description 

As discussed in Chapter Ŷ, Hooke’s law was learned by using an SDOF. Work described in Chapter 
Ŷ was limited to cases of a single stiffness value. Here, multiple stiffness values were used during the 
training so that the learned model could better generalize to different structures with different stiffnesses. 

Different static models with random stiffness values were subjected to random force values to 
form a training set for the NN. The NN inputs included the stiffness and force values. The output of the 
NN was the displacement for these different force-stiffness conditions. The model was designed as a 
zero-length element in OpenSees. 

ŷ.Ŷ. Neural Network Feedforward Calculation 

The NN estimated displacements by comparing the predicted values output by the NN to the 
training values extracted from OpenSees, characterizing the loss. The NN minimizes loss by updating the 
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weights and bias to minimize the error between the training values and estimates from the NN. The larger 
the loss, the larger error from the machine learning model. 

To calculate the loss, estimates for displacements were calculated from the inputs using a feedforward 
pass. 

For a single layer NN with two neurons (figure Ŷ.Ŷ), the feedforward pass calculation for two 
inputs (k and F ) to get an estimate of the output (x) was like that defined in Chapter Ŷ. 

To minimize the loss and make the estimates of the NN as close to the original value as possible, 
the NN had to learn Hooke’s Law. Rearranging Equation Ŷ.Ŵ for the displacements, x: 

x = 
F (ŷ.Ŵ) 
k 

A comparison of Equation ŷ.Ŵ and Equation Ŷ.ŷ, shows that the estimates from the NN can never 
be equal no matter which weight values are used. Therefore, Equation ŷ.Ŵ and Equation Ŷ.ŷ were reformed 
with log normalization to better represent Hooke’s Law and reduce the loss of the NN. 

ŷ.ŷ. Log Normalization 

To align the form of the NN to be similar to Hooke’s Law, log normalization was applied to Equation 
ŷ.Ŵ, and the log-normalized values were used in Equation Ŷ.ŷ. Equation ŷ.Ŵ then became: 

ln(x) = ln(F ) − ln(k) (ŷ.ŵ) 

and Equation Ŷ.ŷ became: 

(2) (1) (1) (2) (1) (1)ln(ex) = w11 g(w11 ln(F) + w12 ln(k)) + w12 g(w21 ln(F) + w22 ln(k)) (ŷ.Ŷ) 

With this normalization, x and xe could be equal to each other, given some combination of weights 
for the loading and stiffness terms in Equation Ŷ.ŷ. 

ŷ.Ÿ. Physics-Informed NN 

The NN was trained by using the log-normalized data in Equation ŷ.ŵ. Figure ŷ.Ŵ shows a physics-informed 
NN, wherein in the training phase, the inputs (F and k) were mapped to the output/estimates (x) to 
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calculate the loss. The estimates of the NN were used to calculate the unbalance force and residual using 
OpenSees and they were added to the loss function. The loss function, which included the loss from the 
data and the residual, was then back propagated to update the weights of the physics-informed NN. In 
this fashion, the physical equations were embedded into the learning process. The unbalance force (Pu) 
and residual (LR) were like those used in Chapter Ŷ. 

Figure ŷ.Ŵ: Physics neural network 

The residual was added to the loss function as a regularizer term so that it could be used in combination 
with the data-driven loss. A parameter λ was used for the “physics” part in the loss function to decide 
how much the NN should learn from the physics of the problem versus the data. This allowed for control 
of the NN adoption between the physics and data-driven part of the problem. Equation ŷ.ŷ shows the 
regularization constraint for a static problem. 

loss = LD + λ LR (ŷ.ŷ) 

And, 
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X 
LD =

1 
(xe − x)2 

(ŷ.Ÿ)n 
i=1 

where xe are the estimates from the NN, x are the original outputs, and LR is the physics residual 
from OpenSees. 

The λ term in the regularizer is an unknown value and varies based on the relative importance of 
the physical equations versus the training data for the problem. Many physics-informed neural networks 
have used Equation ŷ.ŷ to improve the accuracy of the NN estimates (Raissi, Z. Wang, et al. ŵųŴż) (Y. Yang 
and Perdikaris ŵųŴż) (Kharazmi et al. ŵųŴż), but the effects of λ are problem dependent. An improper 
selection of the λ value can lead to potentially unstable and unreliable results (Raissi, Yazdani, et al. ŵųŴŻ) 
(Sun et al. ŵųŵų). 

This study explored the performance of soft constraints and regularization of the NN. The soft 
constraint term include the data-driven or residual in the loss but not both, whereas the regularization 
constraint contains both the data-driven and physics of the problem. 

ŷ.Ź. Regularization Loss Function with Physics 

Equation ŷ.ŷ uses a penalty (λ) on the residual term in addition to the data-driven loss. Using 
the residual as a regularizer in the loss function can be interpreted as weighted training in combination of 
learning the best fit of the data (data-driven). 

One approach has used a varying λ that was updated by the NN after each iteration (S. Wang 
et al. ŵųŵŴ). The λ value is a function of the weights of the NN, which are updated after each iteration. 
This approach optimizes the value of λ just as the NN weights: 

Max(w)
λ = (ŷ.Ź)

Avg(w) 

Table ŷ.Ŵ shows different λ values tested against the performance of the NN for Ÿ,ųųų epochs, an 
Adam optimizer, and a learning rate of Ŵe-ųŶ. The convergence criterion was Ŵe-Ŵŵ. The linear activation 
function converged for all λ values except for Ŵe-ųż. The ReLU activation function did not converge but 
still has a small test loss. 

ŷ.ź. Results 

A NN with two hidden layers and bias was trained for the static model. The training dataset was 
normalized by using the aforementioned Log normalization technique. The NN was trained with and 
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Table ŷ.Ŵ: NN results for different λ values 

λ Activation Function MSE test error Epochs 

Ŵe-ųż 

Ŵe-ųŹ 

ReLU 
Linear 
ReLU 
Linear 

Ŵ.ŻŻE+ŵź 
ŷ.źŴe+ŵŻ 
ŷ.ŵŵE-ŴŶ 
Ŵ.ŷźe-ŵŴ 

Ÿųųų 
Ÿųųų 
Ÿųųų 
ŴŶųŴ 

Ŵe-ųŶ 

Ŵ 

Ŵe+ųŶ 

Varying λ 

ReLU 
Linear 
ReLU 
Linear 
ReLU 
Linear 
ReLU 
Linear 

ŷ.ŵŷe-ŵŷ 
ŷ.ŵŷe-ŵŷ 
Ŵ.ŸŴE-ųŸ 
Ŵ.ŷże-ŵź 
ŷ.ŴŴE-ųŹ 
ŷ.żŷe-ŵż 
ŷ.ŹŶE-ųź 
Ŵ.Ŷże-ŴŶ 

Ÿųųų 
ŴŹŴŶ 
Ÿųųų 
ŴźŷŶ 
Ÿųųų 
ŵųųŹ 
Ÿųųų 
ŴŹŹż 

without the activation function g(.) in Equation ŷ.Ŷ; i.e., the without case was equivalent to using a linear 
activation function. The NN results were trained with a learning rate of Ŵe-Ŷ with a batch size of ŴŹ and 
using an Adam optimizer. 

Figure ŷ.ŵ: Test results of the NN for varying stiffness of SDOF system 

Figure ŷ.ŵ shows results of the static model from OpenSees, which were near those estimated 
by the NN. Figure ŷ.Ŷ plots different loss functions with different activation functions against the number 
of iterations (epochs). Most of the loss functions did not converge after Ÿ,ųųų epochs. However, even 
without convergence, figure ŷ.ŷ shows that they performed well on the test set, and the loss was small. 
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All loss functions performed well when the NN was mapping the inputs to the outputs linearly using the 
log normalization. When the ReLU activation function was used and nonlinearity was introduced into the 
NN, the results did not converge but produced a small loss value after Ÿ,ųųų epochs. The Ldata and LE 

functions with linear (or no activation function) converged, as can be seen in figure ŷ.Ŷ. The performance 
of the NN did not change when the residual was introduced into the loss function, as the dataset could be 
easily fit with the log normalization form. 

Figure ŷ.Ŷ: Different types of loss functions vs number of iterations 

ŷ.Ż. Conclusions 

An NN was trained for an elastic SDOF model with variable stiffness. Physics was included in the 
loss functions of the NN, and different loss function performances were compared. A log normalization 
technique was applied to the NN feedforward pass so that the NN could learn the linear form of the underlying 
physical equation of the static model. The NN was able to estimate the values from OpenSees and performed 
well on the extrapolated values (figure ŷ.Ÿ). 

The data-driven NN and physics-informed NN had similar performance for the static model. Adding 
physics to the loss function did not affect the results because this was a simple model and the results 
were linear. The NN with a linear activation function performed slightly better than the NN with nonlinear 
activation functions because the model was linear-elastic. 
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Figure ŷ.ŷ: Different types of loss functions vs test loss 

Multiple degree of freedom systems (MDOF) should be studied in the future to evaluate the 
performance of the physics-informed loss function. The effects of nonlinearity on the performance of 
the NN should also be studied. Having a more complex problem, such as dynamic analysis, can be used to 
further evaluate the difference in performance between data-driven and physics-informed loss functions. 
This is explored in the next chapter. 
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Figure ŷ.Ÿ: Extrapolation results with training 
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Ÿ. DYNAMIC MODEL 

Ÿ.Ŵ. Introduction 

Machine learning (ML) and deep learning (DL) algorithms have been used in structural engineering 
applications (Thai ŵųŵŵ), such as estimating the load-bearing capacity of isolated structures, the mechanical 
properties of concrete, structural health monitoring, the fire resistance of structures, and analysis and 
design of structures. 

Many ML and DL algorithms do not use scientific theory when estimating the results. Thus, the 
results of ML and DL algorithms are purely data-driven, which can be a problem in terms of robustness of 
the model and interpretation. In this study, the equations of motion were included into the ML and DL 
algorithms in an effort to make the results more reliable. This chapter extends the previous two chapters 
by descripting the use of an SDOF oscillator subjected to free vibration using an initial displacement value. 

Ÿ.ŵ. Dynamic Model Description 

A dynamics model consisting of a spring with a mass, m, and stiffness, k, was initially displaced 
with a displacement, x, and then the free vibration of the system was recorded. The free vibration of a 
dynamic system with mass, m, and stiffness, k in time, t, is given as: 

mẍ+ kx = 0 (Ÿ.Ŵ) 

Dividing by the mass, 

ẍ+ ω2 x = 0 (Ÿ.ŵ) 

where ẍ is the acceleration of a single degree of freedom oscillator at time t, x is the displacement 
of a single degree of freedom oscillator at time t, and ω is the circular frequency of a single degree of 
freedom oscillator. 

A single degree of freedom (SDOF) dynamic problem with m = 1 and k = 1 was subjected to 
random initial displacements. The displacement values were recorded for time t seconds. The NN inputs 
were the acceleration at time t, circular frequency and displacement of the dynamic system at time t. The 
output of the NN was the displacement of the dynamic system at the next time step, t + 1. 
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Ÿ.Ŷ. Recurrent Neural Network 

A recurrent neural network (RNN) is a deep learning algorithm that makes predictions using sequential 
data. A simple neural network or artificial neural network (ANN) is trained by treating each data point as 
an individual input even when the data points are related to each other. An RNN takes advantage of the 
correlation between data points and trains by using the prior information of the data points. RNNs are 
mostly used for time-series forecasting (Coulibaly and Baldwin ŵųųŸ) and natural language processing 
(Yin et al. ŵųŴź). 

Ÿ.ŷ. RNN Architectures 

RNN uses sequence information to improve the outputs. The architecture of an RNN is like an 
ANN with respect to having input layers, hidden layers, and output layers. The only difference is that an 
RNN keeps the output layer information for the next input layer. Figure Ÿ.Ŵ shows an ANN architecture on 
the left and RNN architecture on the right. 

Figure Ÿ.Ŵ: a) ANN architecture, b) RNN architecture 

The RNN architecture can be varied by changing the number of inputs and outputs. The variations 
in the type of RNN architecture depend on the type of RNN needed to solve the problem. Figure Ÿ.ŵ 
shows several architectures; one-to-one NN architecture is an ANN whereas other variations show RNN 
architectures. 

The many-to-one is a recurrent architecture in which many inputs are given to the NN, and it 
assigns weights to all the inputs and learns from the combination of the many inputs to predict one output. 
The one-to-many RNN architecture has many outputs, which are combined to learn from a single input. 
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Another type of RNN architecture is many-to-many, in which many inputs are combined to predict many 
outputs all at once. 

Figure Ÿ.ŵ: Variation in neural network architectures with different number of inputs and outputs 

Ÿ.Ÿ. RNN Forward Pass 

The RNN forward pass is like the forward pass of an ANN, the only difference being that the previous 
output information is used in the next input. The forward pass for an RNN architecture, shown in figure 
Ÿ.Ŷ with input I , hidden state h and output O from time step t − 2 to time step t +1, is calculated at each 
time step as: 

ht = g1(Whht−1 + WiIt) (Ÿ.Ŷ) 

Ot = g2(Woht) (Ÿ.ŷ) 

Where Wi,Wh and Wo are the weights to the input, hidden, and output layer respectively; g1(.) 
and g2(.) are the activation functions; and ht−1 are the previous hidden state. 

Ÿ.Ź. Data Normalization 

An NN is sensitive to the information given to it as input. This is mainly due to how the NN estimates 
the values from the inputs through the forward pass equation. The step size of the gradient descent 
algorithm is influenced by the inputs to the NN. Therefore, it is essential to find a good normalization 
technique that best represents the features of the raw data efficiently. Many data normalization techniques 
have been discussed in (D. Singh and B. Singh ŵųŵų), which are described below. 
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Figure Ÿ.Ŷ: RNN forward pass 

ŷ.Ÿ.ų. Min-Max Normalization 

The Min-Max normalization technique, also known as feature scaling (FS), normalizes the input 
values by scaling the inputs to a desired range. In this study, the input values were normalized between 
Ŵ and ŵ, as FS used with some other function that involves the log, and the normal ų to Ŵ value would not 
work. The min-max normalization is: 

′ Inputs − min(Input)
Inputs = + 1 (Ÿ.Ÿ) 

max(Input) − min(Input) 

ŷ.Ÿ.Ŵ. Variable Stability Scaling (VSS) 

The variable stability scaling method is similar to scaling the inputs to a standard normal distribution. 
The difference is that VSS multiplies the standard normal distribution by the mean and divides it by the 
standard deviation of the data, also known as coefficient of variation. This normalization causes the input 
values with a large standard deviation to have less importance and values with a smaller standard deviation 
to have higher importance. 

′ Inputs − µ µ
Inputs = (Ÿ.Ź)

σ σ 
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ŷ.Ÿ.ŵ. Pareto Scaling (PS) 

The Pareto scaling method uses the standard normal distribution, but the new inputs now have a 
variance equal to the standard deviation. PS minimizes the impact of noise and improves the representation 
of lower concentrated values. 

′ Inputs − µ
Inputs = √ (Ÿ.ź) 

σ 

ŷ.Ÿ.Ŷ. Power Transformation (PT) 

The power transformation normalization transforms the data into having a variance that is constant 
across the dataset such that the dependent variable is equal across all values of the independent variable 
(homoscedasticity). PT is: 

\ (Ÿ.Ż)Inputs = Inputs − min(Input) q
′ \pInputs = p − µ where p = Inputs (Ÿ.ż) 

ŷ.Ÿ.ŷ. Hyperbolic Tangent Normalization (TN) 

The hyperbolic tangent normalization technique was proposed by (Hampel et al. ŵųŴŴ). TN is not 
sensitive to outliers. 

′ 1 Inputs − µ
Inputs = (tanh(0.01( )) + 1) (Ÿ.Ŵų) 

2 σ 

ŷ.Ÿ.Ÿ. Sigmoidal Normalization Logistic Sigmoid (LS) 

The logistic sigmoid (LS) normalization is based on the activation function sigmoid of the NN. LS is 
a nonlinear transformation of the inputs to reduce the effects of the outliers. 

′ 1 Inputs − µ
Inputs = −q where q = (Ÿ.ŴŴ) 

1 + e σ 

ŸŶ 
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ŷ.Ÿ.Ź. Sigmoidal Normalization Hyperbolic Tangent (HT) 

The sigmoidal hyperbolic tangent (HT) normalization is based on the activation function tanh of 
the NN. HT is suitable for scaling the outliers by scaling the inputs linearly, without affecting the inputs. 

−q′ 1 − e Inputs − µ
Inputs = −q where q = (Ÿ.Ŵŵ) 

1 + e σ 

Ÿ.ź. Many-to-One RNN Architecture 

An RNN with many-to-one architecture was trained for the linear dynamic model. The many-to-one 
RNN architecture is shown in figure Ÿ.ŷ for a sequence length of three. The number of neurons in the 
hidden layer was equal to Ŵų with a tanh activation function, and an Adam optimizer was used for the 
RNN. The many-to-one RNN architecture uses the sequence length to estimate solutions, e.g., if the sequence 
length is three, then the many-to-one will analyze three values back in time to predict the fourth value. A 
one-to-many RNN architecture is useful if data features are dependent on each other and previous data 
are available. 

Figure Ÿ.ŷ: Many-to-one RNN architecture with sequence length = Ŷ 

Figure Ÿ.Ÿ shows the performance of the RNN on the training dataset with the different normalization 
techniques. The normalization technique that gave the smallest loss was VSS, followed by LS and TN. VSS 
had a very small training loss, as can be seen in figure Ÿ.Ÿ, because the input values were small when 
normalized by VSS, and the loss between two very small values would be very small as well. However 
VSS did not perform well on the test set. 
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Figure Ÿ.Ÿ: Training loss vs number of iterations for different normalization techniques 

Ÿ.Ż. Results 

After the RNN was trained, the different normalized trained RNNs were tested on a different 
dataset, called the test set. Figure Ÿ.Ź shows the results for the performance of the normalized RNNs on 
the test set. 

The normalization technique that had the smallest test loss was TN. VSS, which performed well 
on the training set did not perform well on the test set for the reason mentioned above. 

Figure Ÿ.Ź: Test loss for different normalization techniques 

An RNN was trained by using TN inputs with sequence length three, learning rate Ŵe-Ŷ, Ŵų neurons 
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in the hidden layers, and an Adam optimizer. Two test results of free vibration for the linear dynamics 
case, with mass m = 1 and stiffness k = 1, subjected to an initial displacement are shown in figure Ÿ.ź. 
The mean squared error loss recorded for Ŵųų test files was ż.ŵżźe-ųź. 

Figure Ÿ.ź: Free vibration results for two initial displacements values for the linear dynamic problem 

Ÿ.ż. Future Work 

This chapter presented results for the data-driven RNN, which may not be robust or interpretable 
without the physical equations being embedded during learning. A physics-informed RNN should be 
studied under conditions in which the loss of the RNN includes the residual. variable mass, and stiffness 
values, nonlinear response, and multiple-degree-of-freedom systems should also be explored in future 
studies. 
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Ź. FLUID STRUCTURE INTERACTION 

Some work has been done on using physics-informed neural networks for fluid structure interaction 
(FSI) problems, but such systems have been one dimensional and linear in nature. A study by (Raissi and 
Karniadakis ŵųŴź) used deep neural networks to deduce the velocity and pressure fields using the Navier-Stokes 
equations. The objective of the study was to transport an incompressible Newtonian passive scalar fluid 
in unbounded (external) and bounded (internal) geometries. Numerical time integration was performed 
on the Navier-Stokes equation and transport equations, and a small portion of data was selected for 
training the network. The success of the algorithm was based on recovering the flow velocity and pressure 
fields solely from the time series data. The results of the study were quite reasonable for a Newtonian, 
non-turbulent fluid and relatively noiseless and clean data. Another study by (White et al. ŵųŴża) introduced 
a new method, the cluster network, with context networks and paired functions to overcome some limitations 
of the fully connected neural network to approximate full solutions. The cluster network has an inductive 
bias, which is stronger than the fully connected network to approximate the simple function and small 
number of local solutions. 

This study preliminarily introduced and implemented NNs for an FSI problem using the particle 
finite element method (PFEM). The FSI problem was explored using two deep learning (DL) algorithms, 
including an artificial neural network (ANN) and a point cloud convolution network (PointConv). OpenSeesPy 
with the particle finite element method (PFEM) (M. Zhu and Scott ŵųŴŷ) was used to generate simulation 
data for training the neural networks. 

Ź.Ŵ. PFEM and NN models 

The structure shown in figure Ź.Ŵ is a highly flexible structure and includes fluid-structure interaction 
effects. In Figure Ź.Ŵ, L is the length of the water, H is the height of the water, l is the distance of the 
water to the column, and b is the height of the column, which is the structure in this problem. These 
were used as the input parameters for the NN, and the output of the NN was the displacement of the 
column due to the fluid. 

A PointConv (W. Wu et al. ŵųŴż) was also used to estimate FSI effects. A PointConv is a neural 
network that uses point convolution and point deconvolution layers and is used to predict ŵD images. The 
term ”convolution” can be thought of as a visualization of an image by the neural network. 

Ź.ŵ. Results 

Figure Ź.ŵ shows the results of the displacement of the column from the NN and the PFEM models. 
The difference between the displacement peaks of the NN and the PFEM model was ų.ųŻŵ percent, and 
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Figure Ź.Ŵ: PFEM model with fluid structure interaction effects 

Figure Ź.ŵ: Column displacement results from the NN and PFEM models 

the NN curve seemed to follow the PFEM model curve reasonably well. 

As the fluid-structure interaction is a time series problem, PointConv was used to predict the 
pointwise state changes of the model in time tn, i.e., PointConv was trying to simulate the PFEM model. 
The blue points in figure Ź.Ŷ are PointConv-predicted simulations while the orange points are PFEM results 
from OpenSeesPy. PointConv clearly learned to avoid the fluid passing through boundaries and simulated 
the fluid in the correct direction, but the column displaced before coming into contact with the water 
and overall did not move as expected. The PointConv simulation needs more training time for a better 
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Figure Ź.Ŷ: PointConv simulating the PFEM model 

prediction of the PFEM model. 

Ź.Ŷ. Summary and Conclusions 

The performance of the algorithms presented in this chapter is promising. This chapter explores 
different types of ML/ DL algorithms without physics-informed approaches to estimate FSI effects. For 
the FSI problem, further investigation is still needed, including using the physics of PFEM during learning, 
evaluating different sets of inputs/ outputs, and investigating other types of NN architectures, such as 
time series prediction with the recurrent neural network instead of an ANN, as discussed in Chapter Ÿ. 
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ź. CONCLUSIONS 

This pilot study applied machine learning (ML)/ deep learning (DL) algorithms to structural analysis 
problems, specifically for tsunami loading on bridges. Several data-driven and physics- informed approaches 
were compared to improve the reliability and interpretability of the NN. 

To identify the best suited ML/ DL algorithms, the performances of several ML/DL algorithms 
were explored for simple structural engineering problems; i.e., linear-elastic static analysis and linear-elastic 
dynamic analysis of a single-degree-of-freedom (SDOF). For both linear-elastic static and dynamic problems, 
different NN hyperparameters were studied, tested, and selected based on best performance. An artificial 
neural network (ANN) was used for the static problem. A recurrent neural network (RNN) was used for 
the dynamic problem. The ANN and RNN had different optimal hyper parameters, such as batch size for 
the ANN and sequence length for RNN, which were tuned to find the best performance for the static and 
dynamic problems, respectively. A preliminary study using ANN and PointConv were used in conjunction 
with the particle finite element method (PFEM) in OpenSeesPy to estimate the effects of fluid-structure 
interaction (FSI). 

ź.Ŵ. Conclusions 

The interpretability and reliability for the ML/ DL algorithms were evaluated by integrating the 
residual with the loss function. Several different types of loss functions were tested to assess performance 
in terms of the trained model’s ability to estimate new test data and extrapolate beyond the training data 
domain. Conclusions are organized by chapter below: 

• The physics-informed NN showed performance similar to that of the data-driven NN for the a static 
problem with constant stiffness. An NN with linear-like activation functions, i.e., linear and ReLU, 
had the best performance for both the physics-informed and data-driven cases, as they best matched 
the linear nature of the underlying physical equations, namely Hooke’s Law. The trained ML/ DL 
model performed well on the extrapolation dataset, showing that the ML/DL model could generalize 
to new data conditions 

• For a static model with varying stiffness, the NN algorithm produced good results when the data 
were log normalized to learn the linear nature of the physical equations. The physics-informed NN 
and data-driven NN showed similar performances, because the static model with varying stiffness 
was a linear problem, and the data-driven approach could provide a near-perfect fit to the data, 
provided that log normalization was utilized. The trained NN model performed well beyond the 
training dataset, and the NN can be used to estimate new data values. 

• The dynamic model was investigated for data-driven RNN. A one-to-many RNN architecture was 
used to estimate the equations of motion. An RNN architecture was used so that the DL algorithm 
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could learn from previous values and find patterns to generalize to new values. The hyperbolic 
tangent normalization (TN) dataset was best suited for the RNN for the dynamics problem. 

• Two DL models were evaluated to represent the nonlinearity of the FSI problem. An ANN was used 
to estimate displacement of the column that included FSI effects. Another DL model, known as 
PointConv, was used to simulate the particle finite element model (PFEM). Both results showed 
promise, but further investigation is needed, such as incorporating physics into the DL model and 
finding the best NN architecture for FSI problems. 

ź.ŵ. Limitations and Future Work 

The studies presented in this report were primarily for linear-elastic SDOFs and only preliminarily 
for FSI. This report contains only the data-driven part for the dynamic model and FSI problem. The point 
cloud convolution model, which represents the simulation for the FSI problem, needs hypertuning and 
more training time for better representation of the dataset. 

Future work should include nonlinear problems, multiple-degree-of-freedom systems for the 
static and dynamic cases, and physics-informed NN models for the dynamic and FSI studies. Once refined, 
the ML/DL algorithm from the FSI studies could be helpful in overcoming the limitations of FSI, i.e., faster 
results and overcoming convergence issues to better understand tsunami loadings on bridges 

ŹŴ 



REFERENCES 

Adeli, Hojjat and C Yeh (ŴżŻż). “Perceptron learning in engineering design”. In: Computer-Aided Civil and 
Infrastructure Engineering ŷ.ŷ, pp. ŵŷź–ŵŸŹ. 

Aladsani, Muneera, Henry Burton, Saman Abdullah, and John Wallace (May ŵųŵŵ). “Explainable Machine 
Learning Model for Predicting Drift Capacity of Reinforced Concrete Walls”. In: Aci Structural Journal 
ŴŴż, pp. ŴżŴ–ŵųŷ. DOI: 10.14359/51734484. 

Alpaydin, Ethem (ŵųŵų). Introduction to machine learning. MIT press. 

Beucler, Tom, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine (ŵųŴż). “Enforcing 
analytic constraints in neural-networks emulating physical systems”. In: arXiv preprint arXiv:ųŻŲŻ.ŲŲŻųŴ. 

Bibal, Adrien and Benoît Frénay (ŵųŴŹ). “Interpretability of machine learning models and representations: 
an introduction.” In: ESANN. 

Bode, Mathis, Michael Gauding, Zeyu Lian, Dominik Denker, Marco Davidovic, Konstantin Kleinheinz, 
Jenia Jitsev, and Heinz Pitsch (ŵųŵŴ). “Using physics-informed enhanced super-resolution generative 
adversarial networks for subfilter modeling in turbulent reactive flows”. In: Proceedings of the Combustion 
Institute ŶŻ.ŵ, pp. ŵŹŴź–ŵŹŵŸ. 

Bubba, Tatiana A, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech Samek, Samuli Siltanen, and 
Vignesh Srinivasan (ŵųŴż). “Learning the invisible: a hybrid deep learning-shearlet framework for 
limited angle computed tomography”. In: Inverse Problems ŶŸ.Ź, p. ųŹŷųųŵ. 

Carvalho, Diogo V, Eduardo M Pereira, and Jaime S Cardoso (ŵųŴż). “Machine learning interpretability: A 
survey on methods and metrics”. In: Electronics Ż.Ż, p. ŻŶŵ. 

Cha, Young-Jin, Wooram Choi, and Oral Büyüköztürk (ŵųŴź). “Deep learning-based crack damage detection 
using convolutional neural networks”. In: Computer-Aided Civil and Infrastructure Engineering Ŷŵ.Ÿ, 
pp. ŶŹŴ–ŶźŻ. 

Chen, Xinlei, Xiangxiang Xu, Xinyu Liu, Shijia Pan, Jiayou He, Hae Young Noh, Lin Zhang, and Pei Zhang 
(ŵųŴŻ). “Pga: Physics guided and adaptive approach for mobile fine-grained air pollution estimation”. 
In: Proceedings of the ŴŲųź ACM International Joint Conference and ŴŲųź International Symposium on 
Pervasive and Ubiquitous Computing and Wearable Computers, pp. ŴŶŵŴ–ŴŶŶų. 

Coulibaly, Paulin and Connely K Baldwin (ŵųųŸ). “Nonstationary hydrological time series forecasting using 
nonlinear dynamic methods”. In: Journal of Hydrology Ŷųź.Ŵ-ŷ, pp. ŴŹŷ–Ŵźŷ. 

Daneshvar, Mohammad Hassan and Hassan Sarmadi (ŵųŵŵ). “Unsupervised learning-based damage assessment 
of full-scale civil structures under long-term and short-term monitoring”. In: Engineering Structures 
ŵŸŹ, p. ŴŴŷųŸż. 

Źŵ 

https://doi.org/10.14359/51734484


Doan, Nguyen Anh Khoa, Wolfgang Polifke, and Luca Magri (ŵųŴż). “Physics-informed echo state networks 
for chaotic systems forecasting”. In: International Conference on Computational Science. Springer, 
pp. Ŵżŵ–ŴżŻ. 

Dung, Cao Vu and Le Duc Anh (ŵųŴż). “Autonomous concrete crack detection using deep fully convolutional 
neural network”. In: Automation in Construction żż, pp. Ÿŵ–ŸŻ. 

Esmaeilzadeh, Soheil, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A Tchelepi, 
Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. (ŵųŵų). “Meshfreeflownet: A physics-constrained 
deep continuous space-time super-resolution framework”. In: SCŴŲ: International Conference for High 
Performance Computing, Networking, Storage and Analysis. IEEE, pp. Ŵ–ŴŸ. 

Flah, Majdi, Itzel Nunez, Wassim Ben Chaabene, and Moncef L Nehdi (ŵųŵŴ). “Machine learning algorithms 
in civil structural health monitoring: a systematic review”. In: Archives of Computational Methods in 
Engineering ŵŻ.ŷ, pp. ŵŹŵŴ–ŵŹŷŶ. 

Forssell, Urban and Peter Lindskog (Ŵżżź). “Combining semi-physical and neural network modeling: An 
example ofits usefulness”. In: IFAC Proceedings Volumes Ŷų.ŴŴ, pp. źŹź–źźų. 

Geneva, Nicholas and Nicholas Zabaras (ŵųŵų). “Modeling the dynamics of PDE systems with physics-constrained 
deep auto-regressive networks”. In: Journal of Computational Physics ŷųŶ, p. ŴųżųŸŹ. 

Gilpin, Leilani H, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal (ŵųŴŻ). “Explaining 
explanations: An overview of interpretability of machine learning”. In: ŴŲųź IEEE ŷth International 
Conference on data science and advanced analytics (DSAA). IEEE, pp. Żų–Żż. 

Glorot, Xavier and Yoshua Bengio (ŵųŴų). “Understanding the difficulty of training deep feedforward 
neural networks”. In: Proceedings of the thirteenth international conference on artificial intelligence 
and statistics. JMLR Workshop and Conference Proceedings, pp. ŵŷż–ŵŸŹ. 

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (ŵųŴŹ). Deep learning. Vol. Ŵ. ŵ. MIT 
press Cambridge. 

Gulikers, Tom (ŵųŴŻ). “An integrated machine learning and finite element analysis framework, applied to 
composite substructures including damage”. In: 

Haghighat, Ehsan and Ruben Juanes (ŵųŵų). “SciANN: A Keras/Tensorflow wrapper for scientific computations 
and physics-informed deep learning using artificial neural networks”. In: arXiv preprint arXiv:ŴŲŲŷ.ŲźźŲŵ. 

Hampel, Frank R, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel (ŵųŴŴ). Robust statistics: 
the approach based on influence functions. Vol. ŴżŹ. John Wiley & Sons. 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (ŵųŴŸ). “Delving Deep into Rectifiers: Surpassing 
Human-Level Performance on ImageNet Classification”. In: CoRR abs/ŴŸųŵ.ųŴŻŸŵ. arXiv: 1502.01852. 
URL: http://arxiv.org/abs/1502.01852. 

ŹŶ 

https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852


Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp 
Hochreiter (ŵųŴź). “GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium”. 
In: CoRR abs/ŴźųŹ.ųŻŸųų. arXiv: 1706.08500. URL: http://arxiv.org/abs/1706.08500. 

Jin, Kyong Hwan, Michael T McCann, Emmanuel Froustey, and Michael Unser (ŵųŴź). “Deep convolutional 
neural network for inverse problems in imaging”. In: IEEE Transactions on Image Processing ŵŹ.ż, 
pp. ŷŸųż–ŷŸŵŵ. 

Kahana, Adar, Eli Turkel, Shai Dekel, and Dan Givoli (ŵųŵų). “Obstacle segmentation based on the wave 
equation and deep learning”. In: Journal of Computational Physics ŷŴŶ, p. ŴųżŷŸŻ. 

Kani, J Nagoor and Ahmed H Elsheikh (ŵųŴź). “DR-RNN: A deep residual recurrent neural network for 
model reduction”. In: arXiv preprint arXiv:ųŹŲŻ.ŲŲŻŵŻ. 

Karpatne, Anuj, William Watkins, Jordan Read, and Vipin Kumar (ŵųŴź). “Physics-guided neural networks 
(pgnn): An application in lake temperature modeling”. In: arXiv preprint arXiv:ųŹųŲ.ųųŶŵų. 

Karumuri, Sharmila, Rohit Tripathy, Ilias Bilionis, and Jitesh Panchal (ŵųŵų). “Simulator-free solution of 
high-dimensional stochastic elliptic partial differential equations using deep neural networks”. In: 
Journal of Computational Physics ŷųŷ, p. ŴųżŴŵų. 

Kharazmi, Ehsan, Zhongqiang Zhang, and George Em Karniadakis (ŵųŴż). “Variational physics-informed 
neural networks for solving partial differential equations”. In: arXiv preprint arXiv:ųŻųŴ.ŲŲźŹŵ. 

Kingma, Diederik P and Jimmy Ba (ŵųŴŷ). “Adam: A method for stochastic optimization”. In: arXiv preprint 
arXiv:ųŶųŴ.ŸŻźŲ. 

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (ŵųŴŵ). “Imagenet classification with deep convolutional 
neural networks”. In: Advances in neural information processing systems ŵŸ, pp. Ŵųżź–ŴŴųŸ. 

LeCun, Yann, D Touresky, G Hinton, and T Sejnowski (ŴżŻŻ). “A theoretical framework for back-propagation”. 
In: Proceedings of the ųŻźź connectionist models summer school. Vol. Ŵ, pp. ŵŴ–ŵŻ. 

Loiseau, Jean-Christophe and Steven L Brunton (ŵųŴŻ). “Constrained sparse Galerkin regression”. In: Journal 
of Fluid Mechanics ŻŶŻ, pp. ŷŵ–Źź. 

M, Rekha (June ŵųŵų). The Ascent of Gradient Descent. URL: https://blog.clairvoyantsoft.com/ 
the-ascent-of-gradient-descent-23356390836f. 

Márquez-Neila, Pablo, Mathieu Salzmann, and Pascal Fua (ŵųŴź). “Imposing Hard Constraints on Deep 
Networks: Promises and Limitations”. In: CoRR abs/ŴźųŹ.ųŵųŵŸ. arXiv: 1706.02025. URL: http:// 
arxiv.org/abs/1706.02025. 

McCulloch, Warren S and Walter Pitts (ŴżŷŶ). “A logical calculus of the ideas immanent in nervous activity”. 
In: The bulletin of mathematical biophysics Ÿ.ŷ, pp. ŴŴŸ–ŴŶŶ. 

Moraffah, Raha, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and Huan Liu (ŵųŵų). “Causal interpretability 
for machine learning-problems, methods and evaluation”. In: ACM SIGKDD Explorations Newsletter 
ŵŵ.Ŵ, pp. ŴŻ–ŶŶ. 

Źŷ 

https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1706.02025


Moreira, Miguel and Emile Fiesler (ŴżżŸ). Neural networks with adaptive learning rate and momentum 
terms. Tech. rep. Idiap. 

Nichols, James A, Hsien W Herbert Chan, and Matthew AB Baker (ŵųŴż). “Machine learning: applications 
of artificial intelligence to imaging and diagnosis”. In: Biophysical reviews ŴŴ.Ŵ, pp. ŴŴŴ–ŴŴŻ. 

Nielsen, Michael A (ŵųŴŸ). Neural networks and deep learning. Vol. ŵŸ. Determination press San Francisco, 
CA. 

Paolucci, Roberto, Filippo Gatti, Maria Infantino, Chiara Smerzini, Ali Güney Özcebe, and Marco Stupazzini 
(ŵųŴŻ). “Broadband ground motions from ŶD physics-based numerical simulations using artificial 
neural networks”. In: Bulletin of the Seismological Society of America ŴųŻ.ŶA, pp. Ŵŵźŵ–ŴŵŻŹ. 

Papadrakakis, Manolis, Vissarion Papadopoulos, and Nikos D Lagaros (ŴżżŹ). “Structural reliability analyis 
of elastic-plastic structures using neural networks and Monte Carlo simulation”. In: Computer methods 
in applied mechanics and engineering ŴŶŹ.Ŵ-ŵ, pp. ŴŷŸ–ŴŹŶ. 

Papalambros, Panos Y and Douglass J Wilde (ŵųųų). Principles of optimal design: modeling and computation. 
Cambridge university press. 

Parish, Eric J and Karthik Duraisamy (ŵųŴŹ). “A paradigm for data-driven predictive modeling using field 
inversion and machine learning”. In: Journal of Computational Physics ŶųŸ, pp. źŸŻ–źźŷ. 

Parker, DavidB (ŴżŻŸ). “Learning-logic: Casting the cortex of the human brain in silicon”. In: 

Pathak, Deepak, Philipp Krähenbühl, and Trevor Darrell (ŵųŴŸ). “Constrained Convolutional Neural Networks 
for Weakly Supervised Segmentation”. In: CoRR abs/ŴŸųŹ.ųŶŹŷŻ. arXiv: 1506 . 03648. URL: http : 
//arxiv.org/abs/1506.03648. 

Peng, Hong, Jingwen Yan, Ying Yu, and Yaozhi Luo (ŵųŵŴ). “Time series estimation based on deep Learning 
for structural dynamic nonlinear prediction”. In: Structures. Vol. ŵż. Elsevier, pp. ŴųŴŹ–ŴųŶŴ. 

Raissi, Maziar and George E. Karniadakis (ŵųŴź). “Hidden Physics Models: Machine Learning of Nonlinear 
Partial Differential Equations”. In: CoRR abs/ŴźųŻ.ųųŸŻŻ. arXiv: 1708.00588. URL: http://arxiv. 
org/abs/1708.00588. 

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (ŵųŴż). “Physics-informed neural networks: A 
deep learning framework for solving forward and inverse problems involving nonlinear partial differential 
equations”. In: Journal of Computational Physics ŶźŻ, pp. ŹŻŹ–źųź. 

Raissi, Maziar, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis (ŵųŴż). “Deep learning 
of vortex-induced vibrations”. In: Journal of Fluid Mechanics ŻŹŴ, pp. ŴŴż–ŴŶź. 

Raissi, Maziar, Alireza Yazdani, and George Em Karniadakis (ŵųŴŻ). “Hidden fluid mechanics: A navier-stokes 
informed deep learning framework for assimilating flow visualization data”. In: arXiv preprint arXiv:ųźŲź.ŲŶŵŴŹ. 

Rosenblatt, Frank (ŴżŸŻ). “The perceptron: a probabilistic model for information storage and organization 
in the brain.” In: Psychological review ŹŸ.Ź, p. ŶŻŹ. 

ŹŸ 

https://arxiv.org/abs/1506.03648
http://arxiv.org/abs/1506.03648
http://arxiv.org/abs/1506.03648
https://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588


San, Omer and Romit Maulik (ŵųŴŻ). “Machine learning closures for model order reduction of thermal 
fluids”. In: Applied Mathematical Modelling Źų, pp. ŹŻŴ–źŴų. 

Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia 
(ŵųŵų). “Learning to simulate complex physics with graph networks”. In: International Conference on 
Machine Learning. PMLR, pp. ŻŷŸż–ŻŷŹŻ. 

Senouf, Ortal, Sanketh Vedula, Tomer Weiss, Alex Bronstein, Oleg Michailovich, and Michael Zibulevsky 
(ŵųŴż). “Self-supervised learning of inverse problem solvers in medical imaging”. In: Domain adaptation 
and representation transfer and medical image learning with less labels and imperfect data. Springer, 
pp. ŴŴŴ–ŴŴż. 

Shah, Viraj, Ameya Joshi, Sambuddha Ghosal, Balaji Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian, 
and Chinmay Hegde (ŵųŴż). “Encoding invariances in deep generative models”. In: arXiv preprint 
arXiv:ųŻŲŸ.ŲųŸŴŸ. 

Singh, Dalwinder and Birmohan Singh (ŵųŵų). “Investigating the impact of data normalization on classification 
performance”. In: Applied Soft Computing żź, p. ŴųŸŸŵŷ. 

Sirignano, Justin and Konstantinos Spiliopoulos (ŵųŴŻ). “DGM: A deep learning algorithm for solving partial 
differential equations”. In: Journal of computational physics ŶźŸ, pp. ŴŶŶż–ŴŶŹŷ. 

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov (ŵųŴŷ). “Dropout: 
a simple way to prevent neural networks from overfitting”. In: The journal of machine learning research 
ŴŸ.Ŵ, pp. Ŵżŵż–ŴżŸŻ. 

Sun, Luning, Han Gao, Shaowu Pan, and Jian-Xun Wang (ŵųŵų). “Surrogate modeling for fluid flows based 
on physics-constrained deep learning without simulation data”. In: Computer Methods in Applied 
Mechanics and Engineering ŶŹŴ, p. ŴŴŵźŶŵ. 

Thai, Huu-Tai (ŵųŵŵ). “Machine learning for structural engineering: A state-of-the-art review”. In: Structures. 
Vol. ŶŻ. Elsevier, pp. ŷŷŻ–ŷżŴ. 

Thompson, Michael L and Mark A Kramer (Ŵżżŷ). “Modeling chemical processes using prior knowledge 
and neural networks”. In: AIChE Journal ŷų.Ż, pp. ŴŶŵŻ–ŴŶŷų. 

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (ŵųŴŻ). “Deep image prior”. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp. żŷŷŹ–żŷŸŷ. 

Wang, Sifan, Yujun Teng, and Paris Perdikaris (ŵųŵŴ). “Understanding and mitigating gradient flow pathologies 
in physics-informed neural networks”. In: SIAM Journal on Scientific Computing ŷŶ.Ÿ, AŶųŸŸ–AŶųŻŴ. 

White, Cristina, Daniela Ushizima, and Charbel Farhat (ŵųŴża). Fast Neural Network Predictions from 
Constrained Aerodynamics Datasets. DOI: 10.48550/ARXIV.1902.00091. URL: https://arxiv. 
org/abs/1902.00091. 

White, Cristina, Daniela Ushizima, and Charbel Farhat (ŵųŴżb). “Neural networks predict fluid dynamics 
solutions from tiny datasets”. In: arXiv preprint arXiv:ųŻŲŴ.ŲŲŲŻų. 

ŹŹ 

https://doi.org/10.48550/ARXIV.1902.00091
https://arxiv.org/abs/1902.00091
https://arxiv.org/abs/1902.00091


Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar (ŵųŵų). “Integrating scientific 
knowledge with machine learning for engineering and environmental systems”. In: arXiv preprint 
arXiv:ŴŲŲŵ.ŲŶŻųŻ. 

Wu, Jin-Long, Karthik Kashinath, Adrian Albert, Dragos Chirila, Heng Xiao, et al. (ŵųŵų). “Enforcing statistical 
constraints in generative adversarial networks for modeling chaotic dynamical systems”. In: Journal of 
Computational Physics ŷųŹ, p. Ŵųżŵųż. 

Wu, Wenxuan, Zhongang Qi, and Li Fuxin (ŵųŴż). “Pointconv: Deep convolutional networks on Ŷd point 
clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
pp. żŹŵŴ–żŹŶų. 

Yang, Liu, Sean Treichler, Thorsten Kurth, Keno Fischer, David Barajas-Solano, Josh Romero, Valentin Churavy, 
Alexandre Tartakovsky, Michael Houston, Mr Prabhat, et al. (ŵųŴż). “Highly-scalable, physics-informed 
GANs for learning solutions of stochastic PDEs”. In: ŴŲųŻ IEEE/ACM Third Workshop on Deep Learning 
on Supercomputers (DLS). IEEE, pp. Ŵ–ŴŴ. 

Yang, Yibo and Paris Perdikaris (ŵųŴż). “Adversarial uncertainty quantification in physics-informed neural 
networks”. In: Journal of Computational Physics Ŷżŷ, pp. ŴŶŹ–ŴŸŵ. 

Yang, Yibo and Paris Perdikaris (ŵųŴŻ). “Physics-informed deep generative models”. In: arXiv preprint 
arXiv:ųźųŴ.Ųŵŷųų. 

Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schütze (ŵųŴź). “Comparative study of CNN and RNN 
for natural language processing”. In: arXiv preprint arXiv:ųŹŲŴ.ŲųŻŴŵ. 

Zadeh, Reza (Nov. ŵųŴŹ). The hard thing about deep learning. URL: https://www.oreilly.com/radar/ 
the-hard-thing-about-deep-learning/?twitter=%40bigdata. 

Zhang, Liang, Gang Wang, and Georgios B Giannakis (ŵųŴż). “Real-time power system state estimation 
and forecasting via deep unrolled neural networks”. In: IEEE Transactions on Signal Processing Źź.ŴŸ, 
pp. ŷųŹż–ŷųźź. 

Zhang, Linfeng, Jiequn Han, Han Wang, Roberto Car, and E Weinan (ŵųŴŻ). “Deep potential molecular 
dynamics: a scalable model with the accuracy of quantum mechanics”. In: Physical review letters 
Ŵŵų.Ŵŷ, p. ŴŷŶųųŴ. 

Zhu, Minjie and Michael H Scott (ŵųŴŷ). “Improved fractional step method for simulating fluid-structure 
interaction using the PFEM”. In: International Journal for Numerical Methods in Engineering żż.Ŵŵ, 
pp. żŵŸ–żŷŷ. 

Zhu, Yinhao, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris (ŵųŴż). “Physics-constrained 
deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled 
data”. In: Journal of Computational Physics Ŷżŷ, pp. ŸŹ–ŻŴ. 

Źź 

https://www.oreilly.com/radar/the-hard-thing-about-deep-learning/?twitter=%40bigdata
https://www.oreilly.com/radar/the-hard-thing-about-deep-learning/?twitter=%40bigdata

	TABLE OF CONTENTS
	LIST OF FIGURE
	LIST OF TABLES
	INTRODUCTION
	Objectives
	Organization of Report

	MACHINE LEARNING/ DEEP LEARNING INTRODUCTION
	Introduction
	Types of Machine Learning
	Supervised Learning
	Unsupervised Learning

	Deep Learning
	Artificial Neural Network
	Activation Function
	Weights and Biases
	A Simple Neural Network

	Feedforward Pass
	Training a Neural Network
	Cost Functions
	Back Propagation
	Optimization of Neural Network
	Training NN Using Gradient Descent


	STATIC MODEL WITH CONSTANT STIFFNESS
	Introduction
	Static Model Description
	Neural Network Estimation
	Weight Initialization
	Xavier Weight Initialization
	He Weight Initialization

	Data Normalization
	Physics Learning NN
	Neural Network Architecture
	One Layer without Bias Neural Network
	Two Layer without Bias Neural Network
	Two Layer with Bias Neural Network

	Hyperparameter Tuning
	Results
	Extrapolation
	Conclusions

	STATIC MODEL WITH VARYING STIFFNESS
	Introduction
	Static Model Description
	Neural Network Feedforward Calculation
	Log Normalization
	Physics-Informed NN
	Regularization Loss Function with Physics
	Results
	Conclusions

	DYNAMIC MODEL
	Introduction
	Dynamic Model Description
	Recurrent Neural Network
	RNN Architectures
	RNN Forward Pass
	Data Normalization
	Min-Max Normalization
	Variable Stability Scaling (VSS)
	Pareto Scaling (PS)
	Power Transformation (PT)
	Hyperbolic Tangent Normalization (TN)
	Sigmoidal Normalization Logistic Sigmoid (LS)
	Sigmoidal Normalization Hyperbolic Tangent (HT)

	Many-to-One RNN Architecture
	Results
	Future Work

	FLUID STRUCTURE INTERACTION
	PFEM and NN models
	Results
	Summary and Conclusions

	CONCLUSIONS
	Conclusions
	Limitations and Future Work




Accessibility Report



		Filename: 

		Pilot Study_ Machine Learning and Deep Learning_20220729_REM.pdf






		Report created by: 

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov


		Organization: 

		DOT, NTL





 [Personal and organization information from the Preferences > Identity dialog.]


Summary


The checker found problems which may prevent the document from being fully accessible.



		Needs manual check: 0


		Passed manually: 3


		Failed manually: 0


		Skipped: 0


		Passed: 24


		Failed: 5





Detailed Report



		Document




		Rule Name		Status		Description


		Accessibility permission flag		Passed		Accessibility permission flag must be set


		Image-only PDF		Passed		Document is not image-only PDF


		Tagged PDF		Passed		Document is tagged PDF


		Logical Reading Order		Passed manually		Document structure provides a logical reading order


		Primary language		Passed		Text language is specified


		Title		Passed		Document title is showing in title bar


		Bookmarks		Passed		Bookmarks are present in large documents


		Color contrast		Passed manually		Document has appropriate color contrast


		Page Content




		Rule Name		Status		Description


		Tagged content		Passed		All page content is tagged


		Tagged annotations		Passed		All annotations are tagged


		Tab order		Passed		Tab order is consistent with structure order


		Character encoding		Failed		Reliable character encoding is provided


		Tagged multimedia		Passed		All multimedia objects are tagged


		Screen flicker		Passed		Page will not cause screen flicker


		Scripts		Passed		No inaccessible scripts


		Timed responses		Passed		Page does not require timed responses


		Navigation links		Passed manually		Navigation links are not repetitive


		Forms




		Rule Name		Status		Description


		Tagged form fields		Passed		All form fields are tagged


		Field descriptions		Passed		All form fields have description


		Alternate Text




		Rule Name		Status		Description


		Figures alternate text		Failed		Figures require alternate text


		Nested alternate text		Passed		Alternate text that will never be read


		Associated with content		Passed		Alternate text must be associated with some content


		Hides annotation		Passed		Alternate text should not hide annotation


		Other elements alternate text		Passed		Other elements that require alternate text


		Tables




		Rule Name		Status		Description


		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot


		TH and TD		Passed		TH and TD must be children of TR


		Headers		Failed		Tables should have headers


		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column


		Summary		Failed		Tables must have a summary


		Lists




		Rule Name		Status		Description


		List items		Passed		LI must be a child of L


		Lbl and LBody		Passed		Lbl and LBody must be children of LI


		Headings




		Rule Name		Status		Description


		Appropriate nesting		Failed		Appropriate nesting







Back to Top


