

PILOT STUDY: MACHINE LEARNING AND DEEP LEARNING
STUDY FOR FLUID STRUCTURE INTERACTION PROBLEMS

FINAL PROJECT REPORT

by

Zarak K. Kasi
Barbara G. Simpson

Michael H. Scott

Oregon State University

Sponsorship
PacTrans

for

Pacific Northwest Transportation Consortium (PacTrans)

USDOT University Transportation Center for Federal Region 10
University of Washington

More Hall 112, Box 352700
Seattle, WA 98195-2700

In cooperation with U.S. Department of Transportation,
Office of the Assistant Secretary for Research and Technology (OST-R)

i

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts

and the accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in

the interest of information exchange. The Pacific Northwest Transportation Consortium, the U.S.

Government and matching sponsor assume no liability for the contents or use thereof.

ii

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle Pilot Study: Machine Learning and Deep Learning study for Fluid
Structure Interaction problems

5. Report Date 07/29/2022

6. Performing Organization Code

7. Author(s) and Affiliations
Zarak K. Kasi, Oregon State University

Barbara G. Simpson, Oregon State University

Michael H. Scott, Oregon State University

8. Performing Organization Report No.

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

PacTrans

Pacific Northwest Transportation Consortium

University Transportation Center for Federal Region 10

University of Washington More Hall 112 Seattle, WA 98195-2700

11. Contract or Grant No.

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered

United States Department of Transportation
Research and Innovative Technology Administration
1200 New Jersey Avenue, SE
Washington, DC 20590

Project draft report 08/01/2022

14. Sponsoring Agency Code

15. Supplementary Notes

Report uploaded to: www.pactrans.org

16. Abstract

Coastal bridges are critical to emergency response after extreme events and are vulnerable to cascading seismic-tsunami events. After the 2011
earthquake and subsequent tsunami in Japan, instances of damage and collapse were observed in Japanese bridges that survived the earthquake but
failed under the hydrodynamic loads induced by the tsunami. The Pacific Northwest in the United States could experience similar tsunami hazards. To
ensure reliable mobility after extreme events, it is necessary to understand, model, and design bridge response for tsunami loading. However, studies
on wave-structure interaction are constrained by the financial cost of experiments and the computational cost of computational fluid dynamics (CFD)
and fluid-structure interaction (FSI) simulations. To practically perform such simulations with reduced computational cost, a pilot study that used
machine learning algorithms for basic structural engineering problems is presented. Similar machine learning models can eventually be used to
estimate the tsunami loading on bridges based on structural properties and flow conditions. Machine learning (ML) and deep learning (DL) algorithms,
when trained for a specific problem, can produce faster results than finite element methods (FEM). Nonetheless, ML and DL algorithms are data-driven
and could produce unreliable results when evaluated outside the training data domain. The interpretability of ML and DL algorithms can also be lost
during the training of the model.
 The reliability and interpretability of ML and DL can be resolved by introducing physics into the ML and DL architectures. This project studied the
performance of data-driven and physics-informed DL algorithms in structural engineering applications. The DL algorithm was studied for static and
dynamic problems using single-degree-of-freedom (SDOF) oscillators representing a simplified model of a bridge pier. Physics was introduced into the
DL algorithm by extracting the residual from the finite-element analysis framework, OpenSees, and integrating it with the loss function during training.
The performance of the DL algorithm with and without physics was evaluated by using different loss functions, activation functions, and other
hyperparameters. For an SDOF for linear static and linear dynamic problems, the data-driven and physics-informed deep learning algorithms produced
similar results. Moreover, if an appropriate neural network architecture was utilized, the DL models were able to extrapolate well beyond the test data.
Although the studied cases were for relatively simple SDOF linear static and dynamic problems, DL algorithms have the potential to produce reliable
results for multi-degree-of-freedom systems, including the relevant physics. The approach of introducing OpenSees along with the ML and DL
algorithms also presents an opportunity for engineers to produce fast and reliable results by supplementing analyses with ML and DL techniques.
Nonlinear problems, multiple-degrees-of-freedom systems, and FSI studies, including the residual during the learning process, should be assessed to
evaluate the performance of DL algorithms beyond the simple structural systems presented herein.

17. Key Words 18. Distribution Statement

Physics Informed Machine Learning, Deep Learning, Fluid structure Interaction, OpenSees

19. Security Classification (of this report) 20. Security Classification (of this page) 21. No. of Pages 22. Price

Unclassified. Unclassified. 60 N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

01723940

2019-S-OSU-2

69A3551747110

0000-0002-3661-9548

0000-0001-5898-5090

iii

SI* (MODERN METRIC) CONVERSION FACTORS

Contents

TABLE OF CONTENTS v

LIST OF FIGURE vii

LIST OF TABLES viii

Ŵ INTRODUCTION Ŵ
Ŵ.Ŵ Objectives . ŵ
Ŵ.ŵ Organization of Report . ŵ

ŵ MACHINE LEARNING/ DEEP LEARNING INTRODUCTION Ŷ
ŵ.Ŵ Introduction . Ŷ
ŵ.ŵ Types of Machine Learning . Ŷ

ŵ.ŵ.Ŵ Supervised Learning . Ŷ
ŵ.ŵ.ŵ Unsupervised Learning . ŷ

ŵ.Ŷ Deep Learning . Ÿ
ŵ.Ŷ.Ŵ Artificial Neural Network . Ÿ
ŵ.Ŷ.ŵ Activation Function . ź
ŵ.Ŷ.Ŷ Weights and Biases . ŴŴ
ŵ.Ŷ.ŷ A Simple Neural Network . Ŵŵ

ŵ.ŷ Feedforward Pass . ŴŶ
ŵ.Ÿ Training a Neural Network . ŴŸ

ŵ.Ÿ.Ŵ Cost Functions . ŴŸ
ŵ.Ÿ.ŵ Back Propagation . ŴŹ
ŵ.Ÿ.Ŷ Optimization of Neural Network . ŴŻ
ŵ.Ÿ.ŷ Training NN Using Gradient Descent . ŵŸ

Ŷ STATIC MODEL WITH CONSTANT STIFFNESS ŵŹ
Ŷ.Ŵ Introduction . ŵŹ
Ŷ.ŵ Static Model Description . ŵź
Ŷ.Ŷ Neural Network Estimation . ŵŻ
Ŷ.ŷ Weight Initialization . Ŷų

Ŷ.ŷ.Ŵ Xavier Weight Initialization . Ŷų
Ŷ.ŷ.ŵ He Weight Initialization . Ŷų

Ŷ.Ÿ Data Normalization . Ŷų
Ŷ.Ź Physics Learning NN . ŶŴ
Ŷ.ź Neural Network Architecture . ŶŶ

Ŷ.ź.Ŵ One Layer without Bias Neural Network . ŶŶ
Ŷ.ź.ŵ Two Layer without Bias Neural Network . Ŷŷ
Ŷ.ź.Ŷ Two Layer with Bias Neural Network . Ŷŷ

Ŷ.Ż Hyperparameter Tuning . ŶŸ
Ŷ.ż Results . Ŷź

iv

Ŷ.Ŵų Extrapolation . ŶŻ
Ŷ.ŴŴ Conclusions . ŷų

ŷ STATIC MODEL WITH VARYING STIFFNESS ŷŴ
ŷ.Ŵ Introduction . ŷŴ
ŷ.ŵ Static Model Description . ŷŴ
ŷ.Ŷ Neural Network Feedforward Calculation . ŷŴ
ŷ.ŷ Log Normalization . ŷŵ
ŷ.Ÿ Physics-Informed NN . ŷŵ
ŷ.Ź Regularization Loss Function with Physics . ŷŷ
ŷ.ź Results . ŷŷ
ŷ.Ż Conclusions . ŷŹ

Ÿ DYNAMIC MODEL ŷż
Ÿ.Ŵ Introduction . ŷż
Ÿ.ŵ Dynamic Model Description . ŷż
Ÿ.Ŷ Recurrent Neural Network . Ÿų
Ÿ.ŷ RNN Architectures . Ÿų
Ÿ.Ÿ RNN Forward Pass . ŸŴ
Ÿ.Ź Data Normalization . ŸŴ

Ÿ.Ź.Ŵ Min-Max Normalization . Ÿŵ
Ÿ.Ź.ŵ Variable Stability Scaling (VSS) . Ÿŵ
Ÿ.Ź.Ŷ Pareto Scaling (PS) . ŸŶ
Ÿ.Ź.ŷ Power Transformation (PT) . ŸŶ
Ÿ.Ź.Ÿ Hyperbolic Tangent Normalization (TN) . ŸŶ
Ÿ.Ź.Ź Sigmoidal Normalization Logistic Sigmoid (LS) . ŸŶ
Ÿ.Ź.ź Sigmoidal Normalization Hyperbolic Tangent (HT) Ÿŷ

Ÿ.ź Many-to-One RNN Architecture . Ÿŷ
Ÿ.Ż Results . ŸŸ
Ÿ.ż Future Work . ŸŹ

Ź FLUID STRUCTURE INTERACTION Ÿź
Ź.Ŵ PFEM and NN models . Ÿź
Ź.ŵ Results . Ÿź
Ź.Ŷ Summary and Conclusions . Ÿż

ź CONCLUSIONS Źų
ź.Ŵ Conclusions . Źų
ź.ŵ Limitations and Future Work . ŹŴ

v

List of Figures

ŵ.Ŵ Comparison between traditional program and machine learning ŷ
ŵ.ŵ Supervised learning regression example: drift capacity for reinforced concrete walls predicted

vs experimental (Aladsani et al. ŵųŵŵ) . Ÿ
ŵ.Ŷ Architecture of an ANN . Ź
ŵ.ŷ Brain neuron . Ź
ŵ.Ÿ Sigmoid function . Ż
ŵ.Ź Hyperbolic tangent function . Ż
ŵ.ź Hyperbolic tangent (red) has a lower test error than sigmoid (blue) (Glorot and Bengio ŵųŴų) ż
ŵ.Ż ReLU function . Ŵų
ŵ.ż ReLU vs sigmoid function . Ŵų
ŵ.Ŵų Leaky ReLU function . ŴŴ
ŵ.ŴŴ (a) Different weights, (b) Different bias . Ŵŵ
ŵ.Ŵŵ (a) A single hidden layer NN, (b) XOR problem . ŴŶ
ŵ.ŴŶ (a) Two hidden layer NN, (b) XOR problem, (c) Complex problem ŴŶ
ŵ.Ŵŷ Neural network with input, hidden and output layer . Ŵŷ
ŵ.ŴŸ Gradient descent algorithm (M ŵųŵų) . Ŵż
ŵ.ŴŹ (a) Convex, (b) Non-convex (Zadeh ŵųŴŹ) . Ŵż
ŵ.Ŵź Epoch vs mini-batch . ŵŴ
ŵ.ŴŻ Gradient descent with momentum. Shifting to a better minimum ŵŵ
ŵ.Ŵż Adam: heavy ball with friction . ŵŵ
ŵ.ŵų Underfitting vs overfitting (Goodfellow et al. ŵųŴŹ) . ŵŶ
ŵ.ŵŴ Dropout to prevent overfitting (Srivastava et al. ŵųŴŷ) . ŵŷ

Ŷ.Ŵ Physics-informed neural networks . ŵŹ
Ŷ.ŵ Linear-elastic spring . ŵŻ
Ŷ.Ŷ NN with single hidden layer, two neurons and no bias . ŵż
Ŷ.ŷ Physics neural network . Ŷŵ
Ŷ.Ÿ NN with two hidden layers, two neurons, and bias . ŶŸ
Ŷ.Ź Number of neurons in first hidden layer vs number of iterations ŶŹ
Ŷ.ź Number of neurons in second hidden layer vs number of iterations ŶŹ
Ŷ.Ż Batch size vs number of iterations . Ŷź
Ŷ.ż Results of the NN for static problem when k = 1 . ŶŻ
Ŷ.Ŵų MSE error vs number of iterations. (a) Normalizing load and displacement, (b) Normalizing

load . ŶŻ
Ŷ.ŴŴ ReLU extrapolation . Ŷż
Ŷ.Ŵŵ Linear extrapolation . Ŷż

ŷ.Ŵ Physics neural network . ŷŶ
ŷ.ŵ Test results of the NN for varying stiffness of SDOF system ŷŸ
ŷ.Ŷ Different types of loss functions vs number of iterations ŷŹ
ŷ.ŷ Different types of loss functions vs test loss . ŷź

vi

ŷ.Ÿ Extrapolation results with training . ŷŻ

Ÿ.Ŵ a) ANN architecture, b) RNN architecture . Ÿų
Ÿ.ŵ Variation in neural network architectures with different number of inputs and outputs . . ŸŴ
Ÿ.Ŷ RNN forward pass . Ÿŵ
Ÿ.ŷ Many-to-one RNN architecture with sequence length = Ŷ Ÿŷ
Ÿ.Ÿ Training loss vs number of iterations for different normalization techniques ŸŸ
Ÿ.Ź Test loss for different normalization techniques . ŸŸ
Ÿ.ź Free vibration results for two initial displacements values for the linear dynamic problem . ŸŹ

Ź.Ŵ PFEM model with fluid structure interaction effects . ŸŻ
Ź.ŵ Column displacement results from the NN and PFEM models ŸŻ
Ź.Ŷ PointConv simulating the PFEM model . Ÿż

vii

List of Tables

Ŷ.Ŵ Different types of ML methods (Willard et al. ŵųŵų) . ŵŻ
Ŷ.ŵ Neural network with single hidden layer and no bias . ŶŶ
Ŷ.Ŷ Neural network with two hidden layers and no bias . Ŷŷ
Ŷ.ŷ Neural network with two hidden layers and bias . Ŷŷ
Ŷ.Ÿ Neural network with two hidden layers and bias with physics loss function ŶŸ

ŷ.Ŵ NN results for different λ values . ŷŸ

viii

vii

LIST OF ABBREVIATIONS

Adam Adaptive moment estimation

AI Artificial intelligence

ANN Artificial neural network

CFD Computational fluid dynamics

CNN Convolutional neural network

DL Deep learning

FEM Finite element methods

FS Feature scaling

FSI Fluid-structure interaction

HT Hyperbolic tangent

LS Logistic Sigmoid

LSTM Long short-term memory

MDOF Multiple degrees of freedom

ML Machine learning

MLP Multi-layer perceptron

MSE Mean squared error

NN Neural network

OpenSees Open System for Earthquake Engineering Simulation

PDE Partial differential equation

PFEM Particle finite element method

PGNN Physics guided neural network

PINN Physics-informed neural network

PS Pareto scaling

PT Power transformation

ReLU Rectified Linear Unit

RNN Recurrent neural network

SciANN Scientific computational with artificial neural network

SDOF Single-degree-of-freedom

viii

TN Tangent normalization

VSS Variable stability scaling

ix

ACKNOWLEDGMENTS

The research conducted in this report was funded by a research grant titled, “Pilot Study:

Machine Learning and Deep Learning study for Fluid Structure Interaction Problems,” funded by the

Pacific Northwest Transportation Consortium (PacTrans). The research was carried out at Oregon State

University. Oregon State University provided matching funds for faculty time on the project. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors

and do not necessarily reflect the views of PacTrans or other participants in the research program.

x

EXECUTIVE SUMMARY

Coastal bridges are critical to emergency response after extreme events and are vulnerable to

cascading seismic-tsunami events. After the 2011 earthquake and subsequent tsunami in Japan,

instances of damage and collapse were observed in Japanese bridges that survived the earthquake but

failed under the hydrodynamic loads induced by the tsunami. The Pacific Northwest in the United States

could experience similar tsunami hazards. To ensure reliable mobility after extreme events, it is

necessary to understand, model, and design bridge response for tsunami loading. However, studies on

wave-structure interaction are constrained by the financial cost of experiments and the computational

cost of computational fluid dynamics (CFD) and fluid-structure interaction (FSI) simulations. To

practically perform such simulations with reduced computational cost, a pilot study, which uses machine

learning algorithms for basic structural engineering problems, is presented. Similar machine learning

models can eventually be used to estimate the tsunami loading on bridges based on structural

properties and flow conditions. Machine learning (ML) and deep learning (DL) algorithms, when trained

for a specific problem, can produce faster results than finite element methods (FEM). Nonetheless, ML

and DL algorithms are data-driven and could produce unreliable results when evaluated outside the

training data domain. The interpretability of ML and DL algorithms can also be lost during the training of

the model.

The reliability and interpretability of ML and DL can be resolved by introducing physics into the

ML and DL architectures. This project studied the performance of data-driven and physics-informed DL

algorithms in structural engineering applications. After a brief overview of ML and DL, this report

presents a study of the DL algorithm for static and dynamic problems using single-degree-of-freedom

(SDOF) oscillators representing a simplified model of a bridge pier. Physics was introduced into the DL

algorithm by extracting the residual from the finite-element analysis framework, OpenSees, and

integrating it with the loss function during training. The performance of the DL algorithm with and

without physics was evaluated by using different loss functions, activation functions, and other

hyperparameters. For an SDOF for linear static and linear dynamic problems, the data-driven and

physics-informed deep learning algorithms produced similar results. Moreover, if an appropriate neural

network architecture was utilized, the DL models were able to extrapolate well beyond the test data.

Although the studied cases were for relatively simple SDOF linear static and dynamic problems,

DL algorithms have the potential to produce reliable results for multi-degree-of-freedom systems,

including the relevant physics. The approach of introducing OpenSees along with the ML and DL

algorithms also presents an opportunity for engineers to have fast and reliable results by supplementing

analyses with ML and DL techniques. Nonlinear problems, multiple degrees of freedom systems, and FSI

studies, including the residual during the learning process, should be assessed to evaluate the

performance of DL algorithms beyond the simple structural systems presented herein.

Ŵ. INTRODUCTION

Coastal bridges are vulnerable to tsunami damage. The ŵųŴŴ Tohoku tsunami in Japan resulted in
damage to over ŵŸų bridges, delaying post-event recovery and emergency response. Bridges that survived
the earthquake failed under the subsequent tsunami due to the hydrodynamic demands. The Pacific
Northwest has similar hazards. Many bridges serve as lifelines for the coastal regions, which are critical
for the mobility of people and goods and to provide post-event emergency response. Thus, it is essential
to understand the response of coastal bridges under tsunami loading to ensure safety after extreme
events. However, the financial cost of experimental tests makes physically simulating the response of
structures to tsunami loadings very expensive. On the other hand, simulation-based design, uncertainty
propagation, fragility analysis, etc., which require many numerical simulations including computational
fluid dynamics (CFD) and fluid-structure interaction (FSI), are impractical because of their computational
expense and long run times.

To mitigate the computational costs associated with CFD/ FSI models, machine learning (ML) and
deep learning (DL) can be utilized to train models that represent the salient features of the numerical
analysis with reduced runtimes. Once the model has been trained on the respective data, the ML models
can run quickly, producing results in a shorter time than the numerical model. However, since the ML and
DL algorithms are data-driven in nature, i.e., they may not enforce the governing equations of motion,
their reliability and interpretability can be suspect in comparison to numerical simulations. The reliability
and interpretability of the ML and DL algorithms make it difficult to trust their solutions for a given problem
based on a purely data-driven approach. A number of studies have tried to address the interpretability
of ML and DL algorithm (Gilpin et al. ŵųŴŻ) (Bibal and Frénay ŵųŴŹ) (Carvalho et al. ŵųŴż) (Moraffah et al.
ŵųŵų). All concluded that ML and DL algorithms need to provide satisfactory explanations of their solution
in order to be widely accepted.

This project addressed the interpretability and reliability of ML and DL algorithms by introducing
physical equations into the learning algorithms. To understand ML and DL algorithms, this study produced
results for a simple representation of a bridge using a single-degree-of-freedom (SDOF) oscillator subjected
to static and dynamic analyses. Numerical results were calculated by using the finite element analysis
framework Open System for Earthquake Engineering Simulation (OpenSees), which is often used for civil
engineering applications. The numerical results from OpenSees were used to generate the training data.
The residual, calculated by using OpenSees, was then incorporated into the loss function during training
to aid learning of the desired equations of motion; the loss function is the main criterion from which the
ML and DL algorithm learns and then evaluates the solution.

Ŵ

Ŵ.Ŵ. Objectives

This report presents a pilot study to use machine learning algorithms to learn static and dynamic
structural response, which can be adapted for CFD/ FSI problems to better understand tsunami loading on
bridges.

The objectives of this report included the following:

Ŵ. Review viable ML and DL algorithms and select potential algorithms for learning. There are many
ML/DL algorithms available for different purposes. It is important to use the ML/ DL algorithm best
suited to the problem for robust results. Many ML and DL algorithms have different characteristics;
e.g., artificial neural networks (ANN) have been used for the design of steel structures (Adeli and
Yeh ŴżŻż) and reliability analysis of steel frames (Papadrakakis et al. ŴżżŹ), a convolutional neural
network (CNN) can be used to identify damage by using images of structures (Cha et al. ŵųŴź) (Dung
and Anh ŵųŴż), and a recurrent neural network (RNN) can be used for time series analysis of structures
(Peng et al. ŵųŵŴ).

ŵ. Develop a learning framework that allows viable ML/ DL algorithms selected from objective (Ŵ) to
learn from the training data extracted from finite-element analyses while minimizing the residual
to satisfy the governing equations. A proper framework is needed to include the physical equations
into the ML/ DL algorithm to achieve improved reliability and interpretability of the ML/ DL results.

Ŷ. Test the ability of the ML/ DL algorithm to generalize to new conditions for the following metrics:
accuracy (relative to the original finite element model), interpretability (maintaining the relevant
physics), and dimensions (speed of computation). The data-driven ML/ DL algorithms tend to perform
well only within the training data domain. This is because the ML/ DL algorithm conventionally
learns the features of the data without attempting to satisfy the governing equations. A physics-informed
ML/ DL algorithm should be able to generalize well to new conditions and extrapolate results beyond
the training data, as it learns based on the residual as well as the data features.

ŷ. Demonstrate the resulting ML/ DL architecture on static and dynamic SDOFs with and without
physics.

Ŵ.ŵ. Organization of Report

This report consists of seven chapters. Chapter ŵ includes the literature review of relevant machine
learning and deep learning algorithms. Chapter Ŷ presents the deep learning algorithm and its suitability
for a static model with constant stiffness. Chapter ŷ provides the deep learning algorithm implementation
for a static model with varying stiffness. Chapter Ÿ introduces deep learning algorithms for dynamic problems.
Chapter Ź describes a study that preliminarily estimates the effects of FSI on a flexible beam-column.
Chapter ź describes the summary and conclusions of the report.

ŵ

ŵ. MACHINE LEARNING/ DEEP LEARNING INTRODUCTION

ŵ.Ŵ. Introduction

Machine learning (ML) is a branch of artificial intelligence (AI) that includes many algorithms to
map inputs to outputs. When given enough data, ML identifies patterns and produces good approximations
of the model representing that data. These approximations of the data may not be explainable/ interpretable,
but the resulting ML program can still be used to identify patterns in the data (Goodfellow et al. ŵųŴŹ).

To conceptually understand ML, traditional analysis methods can be compared to ML techniques.
Many analysis methods take inputs and then approximate outputs based on satisfying physical equations.
For example, by Newton’s second law, inertial forces arise when a body with mass is accelerated. In structural
dynamics, the solution at the next time step can be analytically or numerically found based on adequately
satisfying Newton’s second law, given some inputs (e.g., properties of the body, like its mass, and an
applied time-varying force p(t)) to estimate some outputs (e.g., the motion of the body in terms of displacement,
velocity, and acceleration).

In contrast, ML takes inputs (e.g., properties of the body and p(t)) and outputs (e.g., the motion
of the body) to approximate the program (e.g., finding a pattern representing Newton’s second law); see
figure ŵ.Ŵ. The ML algorithm extracts patterns from given inputs and outputs to produce the program
rather than the output (Goodfellow et al. ŵųŴŹ). The resulting program from the ML algorithm then estimates
new outputs from new inputs that were not in the original training data. This process of mapping given
inputs to the outputs to learn the program is called learning or training. To check the performance of the
ML program, the learned program is checked on an unseen dataset, and is known as testing.

ŵ.ŵ. Types of Machine Learning

Machine learning can be divided into two categories defined by the learning process: [i] supervised
learning and [ii] unsupervised learning. These two types of machine learning differ from each other based
on their application or task. A task is a process of how the algorithm estimates an output given some
input from the program. Supervised learning is when the machine learning algorithm is given the inputs
and outputs, and the class labels (or supervisor) are known. In contrast, unsupervised learning is when
the machine learning algorithm knows only the inputs of the data and does not have any class labels.

Ŵ.Ŵ.ų. Supervised Learning

In supervised learning, the model is assumed to be defined by parameters, θ:

y = g(x|θ) (ŵ.Ŵ)

Ŷ

Figure ŵ.Ŵ: Comparison between traditional program and machine learning

where g(.) is the model (algorithm/program) that the machine learning algorithm is attempting
to learn; θ are the parameters that define the model (e.g., weights and biases explained in subsection
ŵ.Ŷ.Ŷ), x is the inputs, and y is the outputs (or sometimes the class labels of the data).

Examples of supervised learning include regression problems. For example, in linear regression,
Equation ŵ.Ŵ becomes:

y = wx + w0 (ŵ.ŵ)

where w and w0 are the weight and biases given to the inputs and are a variable in the learning
process to get a better fit to the model.

Figure ŵ.ŵ shows an example of regression to predict the drift capacity of reinforced concrete
walls. The inputs, x, include the reinforced concrete wall attributes such as axial load ratio, boundary
longitudinal reinforcement ratio, web transverse reinforcement ratio, etc. and the outputs, y, include
the drift capacity of the wall (Aladsani et al. ŵųŵŵ). Based on data pairs of (x, y), the supervised learning
algorithm learns y as a function of x that follows the form of Equation ŵ.ŵ (Alpaydin ŵųŵų).

Ŵ.Ŵ.Ŵ. Unsupervised Learning

The main aim of unsupervised learning is to find patterns in the input data (Alpaydin ŵųŵų). Finding
clusters or groups in the data is an example of unsupervised learning. For example, unsupervised learning
can be used to find groups or patterns within the data for damage detection in structures (Daneshvar and
Sarmadi ŵųŵŵ).

ŷ

Figure ŵ.ŵ: Supervised learning regression example: drift capacity for reinforced concrete walls predicted
vs experimental (Aladsani et al. ŵųŵŵ)

ŵ.Ŷ. Deep Learning

Deep learning is a subcategory of machine learning inspired by the structure and function of
the brain’s neural network. Originally, deep learning was known as the multi-layer perceptron (MLP)
(Rosenblatt ŴżŸŻ). Over the years, deep learning has been defined by many different names, including
deep learning models, nets, neural nets, or neural networks. Research interest in deep learning grew
in the ŴżŻųs (Parker ŴżŻŸ) (LeCun et al. ŴżŻŻ) and then peaked in the ŵųųųs due to the availability of
massive amounts of data (Nichols et al. ŵųŴż).

Ŵ.ŵ.ų. Artificial Neural Network

An artificial neural network (ANN) is composed of a collection of connections known as neurons.
Initially, neurons were modeled in ŴżŷŶ (McCulloch and Pitts ŴżŷŶ) as a switch that receives information
from other neurons. Depending on the relevance of the information received, the neurons remain active
or inactive. In modern ANNs, these neurons are organized primarily into three types of layers, namely
the Ŵ) input layer, ŵ) hidden layer(s), and Ŷ) output layer; see figure ŵ.Ŷ. The properties of the ANN and its
function depend on the properties of the hidden layers. For example, if the hidden layers are convolution

Ÿ

layers, the network becomes a convolution neural network (CNN). If the hidden layers are long short-term
memory (LSTM) layers, the network becomes a recurrent neural network (RNN). The hidden layers can
also be dense layers, meaning all the neurons of the network are connected.

Figure ŵ.Ŷ: Architecture of an ANN

Artificial Neuron

Neurons are the fundamental units of the brain. The brain consists of Ŵųų billion biological neurons
that perform a simple operation by receiving electrical pulses from other neurons. They receive information
(inputs) from the external world, send commands (outputs) to other parts of the body, e.g., muscles, and
relay or transform electrical signals. A brain neuron consists of dendrites, soma (cell body), and axons
(figure ŵ.ŷ).

Figure ŵ.ŷ: Brain neuron

An artificial neuron is roughly based on the function of brain neurons. In ANNs, the functionality
of the neuron is based on the activation function.

Ź

Ŵ.ŵ.Ŵ. Activation Function

The activation function introduces nonlinearities into Equation ŵ.ŵ, making the network capable
of learning complex problems. There are many activation functions available today, and each activation
function has advantages and disadvantages. The selection of the activation function depends on nonlinearity
(e.g., nonlinear neuron captures parabolic trends), range (e.g., <ų,Ŵ>,<-Ŵ,Ŵ>, or <ų,∞>), derivative (useful
for back propagation, explained in subsection ŵ.Ÿ.ŵ), and value near the origin (Gulikers ŵųŴŻ). Some of
the most used activation functions and their advantages and disadvantages are summarized below.

Sigmoid

The sigmoid function is the most widely used activation function. It is defined as:

xe
Sigmoid(x) = (ŵ.Ŷ)

1 + ex

where x is the input to the function.

The advantage of the sigmoid function is that it has a smooth gradient and maps to values between
ų and Ŵ, resulting in clear predictions. The sigmoid function predictive qualities are illustrated in figure
ŵ.Ÿ,where the values of x above ŵ and below -ŵ are mapped to values of Ŵ and ų respectively.

A disadvantage of the sigmoid function is its vanishing gradient, i.e., very large and small values
of x result in a negligible change in f(x). In this case, the NN learns very slowly or does not learn at all.
Other disadvantages of the sigmoid function include outputs that are not centered around zero and the
computational expense.

Hyperbolic Tangent

The hyperbolic tangent (tanh) function is a scaled version of the sigmoid function. It is defined as:

−xex − e
tanh(x) = (ŵ.ŷ) −xex + e

Note, f(x) is now zero-centered. However, the disadvantages of having a vanishing gradient
and being computationally expensive, similar to the sigmoid function, still remain. Figure ŵ.Ź shows the
hyperbolic tangent function. Figure ŵ.ź compares the performance of tanh and sigmoid functions, showing
that tanh performs better than sigmoid (Glorot and Bengio ŵųŴų).

ź

Figure ŵ.Ÿ: Sigmoid function

Figure ŵ.Ź: Hyperbolic tangent function

Ż

Figure ŵ.ź: Hyperbolic tangent (red) has a lower test error than sigmoid (blue) (Glorot and Bengio ŵųŴų)

Rectified Linear Unit

The Rectified Linear Unit (ReLU) is a popular activation function. The equation for ReLU is

ReLU(x) = max(0, x) (ŵ.Ÿ)

The ReLU function always maps to zero for all negative inputs. When the input is greater than
zero, the output is the identity function. The derivative for positive input values of x is always equal to
Ŵ (figure ŵ.Ż), making the network computationally efficient and faster at learning. The convergence of
ReLU activation functions can be seven times faster than the sigmoid function (Krizhevsky et al. ŵųŴŵ)
(figure ŵ.ż).

Disadvantages of the ReLU function include the dying ReLU phenomenon, which is when inputs
are nearly zero or negative. In this case, the gradient becomes zero and the network cannot learn anymore.

ż

Figure ŵ.Ż: ReLU function

Figure ŵ.ż: ReLU vs sigmoid function

Ŵų

Leaky ReLU

To avoid the dying ReLU phenomenon, the leaky ReLU was introduced as an activation function. It
is defined as:

LeakyReLU(x) = max(αx, x) (ŵ.Ź)

where α is a small constant. Figure ŵ.Ŵų plots the leaky ReLU for an α value of ų.ųŸ.

Although the leaky ReLU solves the dying ReLU problem, the predictions of leaky ReLU may not
be consistent for negative input values of x.

Figure ŵ.Ŵų: Leaky ReLU function

Ŵ.ŵ.ŵ. Weights and Biases

A neural network is the combination of connected layers of neurons. To ”turn on” each neuron,
multiple weights, w, are assigned to the inputs. The dot product of the weights w and inputs x are calculated,
and an activation function is applied to generate the output. A bias, b, provides flexibility (shifting the
results towards positive and negative) in the neuron. Using these terms, Equation ŵ.Ŵ can be re-written as

ŴŴ

h(x) = g(x1w1 + x2w2 + x3w3 + b)
(ŵ.ź)

h(x) = g(w T x + B)

where g(.) is the activation function, x are inputs, w are weights assigned to the inputs, b is the
bias, and h(x) is the output.

Increasing the weights of the input activates the function more to reflect the importance of the
input. Figure ŵ.ŴŴ (a) shows that an increase in weights to the sigmoid function makes the curve more
linear and has a higher activation,whereas figure ŵ.ŴŴ (b) shows that an increase in bias changes the node
activation from -ŷ to ų to ŷ to add more flexibility to the function.

Figure ŵ.ŴŴ: (a) Different weights, (b) Different bias

Ŵ.ŵ.Ŷ. A Simple Neural Network

A neural network becomes more flexible as more hidden layers are added to the network. With
no hidden layers in the neural network, the program collapses into linear regression in Equation ŵ.ŵ. Adding
more hidden layers to the NN increases the nonlinearity of the network. A single hidden layer network
acts as the boundary of a convex region, as shown in figure ŵ.Ŵŵ. It can estimate the XOR problem, i.e., if
the two inputs of the problem are different, then the output is true or else the output is false. For example,
if the inputs are Ŵ and ų, then it is classified as true, but if the inputs are ų and ų or Ŵ and Ŵ, then the output
is false.

When the NN has two hidden layers, the flexibility of the network increases, and the NN is then
the combination of convex regions, as shown in figure ŵ.ŴŶ.

Ŵŵ

Figure ŵ.Ŵŵ: (a) A single hidden layer NN, (b) XOR problem

Figure ŵ.ŴŶ: (a) Two hidden layer NN, (b) XOR problem, (c) Complex problem

ŵ.ŷ. Feedforward Pass

The information in an NN flows from the inputs, x, to the outputs by computing the function
defined in Equation ŵ.Ŵ. This flow of information is known as the feedforward pass (Goodfellow et al.
ŵųŴŹ). The purpose of a feedforward pass is to find the model that can be used to estimate the outputs
from the inputs. This model is represented by weights, w, assigned to each node of the NN and the bias,

ŴŶ

b.

The feedforward pass can be explained with the help of a three-layer network, which includes
an input, one hidden, and an output layer; see figure ŵ.Ŵŷ. The outputs of each layer, h, are described
mathematically as:

(2) (1) (1) (1) (1)
h = g(x1w + x2w + x3w + b)1 11 12 13 1
(2) (1) (1) (1) (1)

h = g(x1w + x2w + x3w + b)2 21 22 33 2
(2) (1) (1) (1) (1)

h = g(x1w + x2w + x3w + b)3 31 32 33 3
(3) (2) (2) (2) (2) (2) (2) (2)

= g(h w + h w + h w + b)hW,b(x) = h1 1 11 2 12 3 13 1

where w(k) refers to i node in the connection layer, j refers to the originating layer, and k refers ij

to the number of layers.

The output of each layer is the summation of the bias, b, and inputs, x, of the previous layer
multiplied by a weight. This summation is then passed through an activation function, g, to introduce
nonlinearities.

To initiate training, the weights and the bias at the start of the training of the NN are initially
set to random values. These values are then updated by backpropagation (subsection ŵ.Ÿ.ŵ), with each
feed-forward pass, updating the “model” represented by the NN.

Figure ŵ.Ŵŷ: Neural network with input, hidden and output layer

Ŵŷ

ŵ.Ÿ. Training a Neural Network

To train a NN for an estimate of the output, the NN should identify the best weights and bias to
represent the problem. These weights and biases are optimized by the loss function (error) at the end of
a feedforward pass.

Ŵ.ŷ.ų. Cost Functions

In supervised learning, the loss function is minimized to find optimal weights and bias. The loss
function returns the value of the error to the training data after each feedforward pass. The cost function
is then the average of the loss function over n training samples. The cost function is reduced by checking
the input and output pairs of known data and varying the weights accordingly to minimize the cost function.
Thus, the goal of the cost function is to provide a metric to measure increases or decreases in the performance
of the network. When the cost function reduces to a tolerance defined by the user, the algorithm is said
to be converged. The basic form of the cost function is

C(w, b, x, y) (ŵ.Ż)

where w are the weights of the NN, b is the bias, x is the input to the network and y are the
expected outputs in vector forms.

There have been many proposed loss functions with different properties. All of these have the
following two important attributes (Nielsen ŵųŴŸ) (Papalambros and Wilde ŵųųų):

• The cost function should be a scalar value representing the error of n training samples with respect
to the data. This is important to compute the derivative of the cost function, which is needed to
minimize the cost function.

• The input-output layers should remain unchanged throughout the optimization process, and the
cost function should only be calculated from the outputs of the network.

Quadratic Cost Function

The quadratic cost function, more commonly known as mean-squared error (MSE), is often used
in statistical problems. MSE is the minimum average squared distance value between the estimated
values and the original values. The NN tries to minimize the cost function to achieve better performance
based on predicted values of output and the original outputs from the training data. However, MSE does
not perform well in combination with some activation functions, such as the sigmoid function (Gulikers

ŴŸ

ŵųŴŻ). Thus, MSE is used for regression problems. MSE is written as:

X
CMSE (w, b, x, y) =

1
(y ∗ − y)2 (ŵ.ż)

n
i=1

where n is the number of training points and y ∗ is the estimated values from the model in vector
form.

Cross Entropy Cost Function

The cross-entropy cost function enhances the performance of the NN. Cross-entropy reduces the
effect of slow learning, which can occur due to saturation using the MSE; i.e., slight differences between
the expected and original values result in large MSE values. Cross-entropy is defined as:

X
CCE (w, b, x, y) = − ∗ [y ln y + (1 − y) ln(1 − y ∗)] (ŵ.Ŵų)

n

Lų Cost Function

The LŴ cost function or mean absolute error (MAE) is the absolute difference between the estimated
value and the original value. It has the same properties as MSE in terms of saturation causing slow learning,
but it is more reliable as the errors are not as large as in MSE. The LŴ cost function is written as:

X
CMAE (w, b, x, y) =

1
(y ∗ − y) (ŵ.ŴŴ)

n
i=1

Ŵ.ŷ.Ŵ. Back Propagation

Outputs of the NN are predicted from the inputs during the feed-forward pass. These predicted
outputs and the original training outputs are used to calculate the cost function. Back propagation is used
to adjust the weights of the layers to minimize the loss function.

Back propagation uses the chain-rule to estimate this change in the cost function due to the
estimates for the weights. For example, referring to figure ŵ.Ŵŷ, back propagation calculates the change
in the cost function due to the weight assigned to the second neuron in the second layer (w(2)); i.e. to 12

estimate the change of the cost function C with respect to w(2), back propagation calculates the change 12
(3) (3)of C with respect to the output h , the change of h with respect to activation function in the second 1 1

(2) (2) (2)layer second neuron z , and the change of z to w12 . To calculate the change in the cost function with 1 1

respect to the weight of one neuron, w(2), these results are multiplied based on the chain rule: 12

ŴŹ

(3) (2)
∂C ∂C ∂h ∂z 1 1= (ŵ.Ŵŵ)

(2) (3) (2) (2)
∂w ∂h ∂z ∂w 12 1 1 12

The last term of Equation ŵ.Ŵŵ is:

(3) (2) (2) (2) (2) (2) (2) (2)
= g(h w + h w + h w + b)hw,b(x) = h1 1 11 2 12 3 13 1

(3) (2)
= g(z)hw,b(x) = h1 1

(2) (2) (2) (2) (2)
z = h1w + h3w + b1 11 +h2w12 13 1

(2)
∂z1 = h2(2)
∂w12

The second to last term of Equation ŵ.Ŵŵ depends on the activation function used in the layer of
the NN. Assuming that the sigmoid activation function is used:

(3)
∂h ′ 1 = g (z) = g(z)(1 − g(z))

(2)
∂z1

The first term of Equation ŵ.Ŵŵ is the derivative of the cost function with respect to the output.
Assuming we use the quadratic function or MSE as the cost function (Equation ŵ.ż) and, for simplicity,
using n = ŵ:

1 (3) (2)
C(w, b, x, y) = ∥y1 − h (z)∥2

1 12
1(3) (2) 2Let u = ∥y1 − h (z)∥ so C = u1 1 2

∂C (3)
= −(y1 − h)1(3)

∂h1

These three terms are multiplied to give the change of cost function with respect to the weight of
the second neuron in the second hidden layer. The above calculations can be simplified by defining δ as a
new term:

′(nl) (nl) (nl)δ = −(yi − h)g (z)i i i

Ŵź

i

where i is the node number of the output layer and for the example case of figure ŵ.Ŵŷ, is always
Ŵ. h(nl) is the output from the final layer.

The cost function in terms of δ and the output of its layer is:

∂C (l) (nl)
(l)

= hj δi (ŵ.ŴŶ)
∂wij

The δ term needs to be back propagated to ultimately connect the weight of each neuron in a
layer of the NN to the cost function. A similar process is used to back propagate the bias. Equation ŵ.ŴŶ is
then used in an optimization procedure, typically gradient descent, to update new weights and biases for
the NN based on the minimization of the cost function. The new weights and biases for the NN are:

(l) (l) ∂C(w, b)
wij = wij −

(l) (ŵ.Ŵŷ)
∂wij

(l) (l) ∂C(w, b)
bi = bi −

(l) (ŵ.ŴŸ)
∂bi

Ŵ.ŷ.ŵ. Optimization of Neural Network

The weight and biases are optimized based on the loss function so that the network learns the
patterns from the input and output pairs. The main function of optimization is to minimize the loss function
for its weights and biases. For example, Equation ŵ.ŴŹ is based on optimization of the weights using gradient
descent.

min C(w, b, x, y)
w

while ∥∇w∥ > tolerance (ŵ.ŴŹ)

w =w − α∇w

where α is the learning rate, i.e., the step size taken towards convergence.

The optimization problem tries to find the weights and biases so that the cost function of the
network is at a local minimum. Note, the local minimum is sometimes the near-best solution, as finding
the global minimum can be hard and at times unnecessary (Goodfellow et al. ŵųŴŹ). This is done by moving
in the opposite direction of the slope from the current point by α (figure ŵ.ŴŸ).

ŴŻ

Figure ŵ.ŴŸ: Gradient descent algorithm (M ŵųŵų)

The optimization problem is convex for a single node NN. This means that all the local minima
are also the global minima, and there is only one solution. But as more neurons are added to the NN,
the optimization problem becomes non-convex, and there can be multiple minima, also known as saddle
points. As the gradient tends towards zero near these saddle points, the gradient descent algorithm can
get stuck in one of these local minimas and result in sub-optimal weights and biases (figure ŵ.ŴŹ).

Figure ŵ.ŴŹ: (a) Convex, (b) Non-convex (Zadeh ŵųŴŹ)

Ŵż

There is no straightforward solution to selecting a local minimum based on the non-convex nature
of NNs. To enhance training, the following strategies have been proposed: [i] stochastic gradient descent
optimization, [ii] gradient descent optimization with momentum, [iii] Adam optimization, [iv] dropout,
[v] data and batch normalization, and [vi] regularization. Some of these techniques are related to the
optimization of the gradient descent algorithm,whereas others are related to the regularization of data
and the network.

Stochastic Gradient Descent

In gradient descent, when the NN has many nodes in the hidden layers, the gradient ∇W in
Equation ŵ.ŴŹ can be computationally expensive and take a significant amount of time to compute. The
gradient computation makes the NN slow to optimize the weights and bias for a batch, which is the entire
training set. Also, the network can get stuck near a saddle point or at a non-optimum local minimum.

Additionally, computing the gradient over a batch can lead to memory issues, as the gradients
taken for a large network can be very large.

These problems can be mitigated by using mini-batches,where gradient descent is calculated over
smaller portions of the data in an optimization algorithm known as a stochastic mini-batch approximation
or stochastic gradient descent (Equation ŵ.Ŵź). The NN learns by re-arranging the inputs randomly to
make mini-batches. An iteration is defined as the computation of the gradient over a mini-batch. The
process of randomly selecting different mini-batches from the training data is then repeated several
times. Each time an input example is looped through the NN, one cycle through the entire training dataset,
a number of iteration (epoch) is recorded (figure ŵ.Ŵź). Many epochs may be required to optimize the NN.

nX
min C(f(xi, w), yi)
w

i=1 (ŵ.Ŵź) nX ∂C(f(xi, w), yi)∇w
∂w

i=1

Momentum

The weights and bias of the network are updated by minimizing the loss; e.g., using the gradient
descent algorithm. For the gradient descent algorithm to converge, the learning rate α in Equation ŵ.ŴŹ
needs to be small enough. However, learning rates too small can result in slow convergence. Generally,
a large learning rate is used initially. If the algorithm fails, the learning rate is decreased by a factor of Ŵų,
and so on.

Momentum can be used to enhance the speed of learning (Moreira and Fiesler ŴżżŸ). Momentum
includes the gradient of the function in the previous step as a part of the update to the next step.

ŵų

Figure ŵ.Ŵź: Epoch vs mini-batch

Algorithm Ŵ: Gradient Descent with Momentum

INITIALIZATION: D0 = ų
while ∥∇f(w)∥ > tolerance do:

Calculate Dt+1 = µDt − αGt

Wt+1 = Wt + Dt+1

end while.
where: α is the learning rate, µ is momentum, W are the weights

Momentum decreases the time required to reach convergence, by giving better results as it uses
previous information to find local minima; see figure ŵ.ŴŻ. Values representing the contribution of momentum
(µ) ranges from ų to Ŵ.ų and are typically between ų.Ź to ų.Ż. If the momentum is equal to zero, then the
algorithm collapses to gradient descent without momentum.

Adam

Adam (adaptive moment estimation) is another commonly used optimization technique. Adam
combines the advantages of two other optimization techniques in gradient descent, namely AdaGrad and
RMSprop (Kingma and Ba ŵųŴŷ) (describing these is outside the scope of this report). Adam stores the
exponentially decaying average of the past squared gradients and past gradients. This allows Adam to
behave like a heavy ball with friction (Heusel et al. ŵųŴź), allowing the optimization algorithm to shoot
over non-optimal local minima to find more optimal minima. For example, figure ŵ.Ŵż shows the heavy
ball with the friction concept of Adam,where it shoots over θ+ and settles at minimum θ∗ .

ŵŴ

Figure ŵ.ŴŻ: Gradient descent with momentum. Shifting to a better minimum

Figure ŵ.Ŵż: Adam: heavy ball with friction

ŵŵ

Dropout

A deep network can sometimes cause problems as it can overfit the data. Overfitting is when the
NN learns the trends in the training set but, when given new data points, is unable to generalize those
trends to new data. In contrast, underfitting occurs when the network is unable to learn the general
trends in the training data set.

Overcoming underfitting and overfitting requires a trade-off between bias and variance. A bias
is a difference between the average prediction of the model and the correct value. A high bias indicates
little attention to data (high error). Variance is the variability and spread in the model. A high variance
means the generalization of the model. Figure ŵ.ŵų shows the underfitting and overfitting zones for high
bias and high variance and how they affect the training and test error of the NN.

Figure ŵ.ŵų: Underfitting vs overfitting (Goodfellow et al. ŵųŴŹ)

Dropout can alleviate the overfitting problem by ignoring neurons in the NN if they become co-dependent
during the training phase. The NN then becomes smaller, and more appropriate weights can be assigned
to the remaining neurons, while neurons that might contain outliers can be neglected (figure ŵ.ŵŴ).

Data and Batch Normalization

Training of the NN depends on data structuring. If the data are unscaled, one value of the inputs
can dominate the other values, and the NN will assign more weight to this input value. The gradient
would “explode” in the gradient descent algorithm, as one weight would be significantly larger than the
other weights, causing performance issues in the NN. Therefore, normalizing the data so that all points
are of a similar range/scale can ensure that all inputs are treated similarly. Normalization also reduces the
training phase of the NN.

Sometimes, even after normalizing the data, one of the weights of the NN can still become large.
In very deep NNs, which have several layers and functions, assigning or updating weights to each layer

ŵŶ

Figure ŵ.ŵŴ: Dropout to prevent overfitting (Srivastava et al. ŵųŴŷ)

is done simultaneously. The updates assume that the functions remain constant, but in the NN these
functions are changed simultaneously, which can cause issues (Goodfellow et al. ŵųŴŹ). Batch normalization
can mitigate these issues.

Batch normalization re-parameterizes the NN. The output from the activation function is normalized.
Batch normalization is done by multiplying the output by an arbitrary parameter g and adding arbitrary
parameter b. This procedure sets a new mean and standard deviation for the data and is optimized during
the training phase.

Regularization

Another way to address overfitting is to introduce a regularizer to the cost function. This regularizer
term penalizes the loss function to aid in generalization. An example of a regularizer in the case of weight
decay which is added to Equation ŵ.ż is:

X1 TCMSE (w, b, x, y) = (y ∗ − y)2 + λw w) (ŵ.ŴŻ) n
i=1

The additional regularizer term at the end of Equation ŵ.ŴŻ is then minimized, as well as the MSE
cost function, by the NN during learning. This approach of adding a regularizer to the cost function is
known as regularization (Goodfellow et al. ŵųŴŹ).

ŵŷ

Ŵ.ŷ.Ŷ. Training NN Using Gradient Descent

The following algorithm summarizes the steps of training a NN by using the gradient descent
algorithm.

Algorithm ŵ: Training NN Using Gradient Descent

INITIALIZATION: Randomize values of weights for each layer in the NN
while iterations < iteration limit do:

Set ∆w and ∆b to random values
For samples Ŵ to m:

a. Perform a feed forward pass through all the layers. Store the
activation function outputs h(l)

(nl)b. Calculate the δj value for the output layer
c. Use back propagation to calculate the δ(l) values for layers ŵ to
(n − 1)

d. Update the ∆W and ∆b for each layer
Perform a gradient descent step using� �

(l) (l) − α 1 w = w ∆w� m �
b(l) 1 = b(l) − α ∆b m

end while.
where: α is the learning rate, m are training samples.

ŵŸ

Ŷ. STATIC MODEL WITH CONSTANT STIFFNESS

Ŷ.Ŵ. Introduction

Engineering applications for ML include solving partial differential equations (Sirignano and Spiliopoulos
ŵųŴŻ), fluid dynamic problems (Raissi, Yazdani, et al. ŵųŴŻ) (Sanchez-Gonzalez et al. ŵųŵų) (White et al.
ŵųŴżb), emulating physical systems (Beucler et al. ŵųŴż), and structural health monitoring (Flah et al.
ŵųŵŴ), among others. However, ML algorithms do not use scientific theory but instead are data-driven
and find a program based on the pattern of mapped inputs to the outputs. In contrast, traditional programs
or physics-informed models in numerical methods often are based on scientific theory (figure Ŷ.Ŵ). To
enhance the reliability and robustness of the ML results, physical equations can be introduced into the
ML algorithm, referred to as physics-informed neural networks (PINN) (Raissi, Perdikaris, et al. ŵųŴż),
physics guided neural networks (PGNN) (Karpatne et al. ŵųŴź) (Figure Ŷ.Ŵ), or scientific computational with
artificial neural networks (SciANN) (Haghighat and Juanes ŵųŵų).

Figure Ŷ.Ŵ: Physics-informed neural networks

The literature showed that there are many ways of incorporating physics into the NN. The most
common method is to introduce the residual into the loss function of the NN algorithm. The addition of
the residual into the loss function helps the learned model to be consistent with the physical equations
of the problem. NN loss-based physics models can also better extrapolate and generalize outside the
original data domain.

The applications of NN loss-based physics-informed models include solving partial differential
equations (PDEs) (Y. Zhu et al. ŵųŴż) (Geneva and Zabaras ŵųŵų), discovering governing equations (Loiseau

ŵŹ

and Brunton ŵųŴŻ) (Doan et al. ŵųŴż), inverse modelling (Raissi, Yazdani, et al. ŵųŴŻ) (Kahana et al. ŵųŵų),
parameterization (Linfeng Zhang et al. ŵųŴŻ) (Beucler et al. ŵųŴż), down-scaling (Esmaeilzadeh et al. ŵųŵų)
(Bode et al. ŵųŵŴ), uncertainty quantification (Y. Yang and Perdikaris ŵųŴŻ) (Y. Yang and Perdikaris ŵųŴż)
(Y. Zhu et al. ŵųŴż) (Geneva and Zabaras ŵųŵų) (Karumuri et al. ŵųŵų) (L. Yang et al. ŵųŴż), and generative
models (J.-L. Wu et al. ŵųŵų) (Shah et al. ŵųŴż).

Another type of NN physics-informed method is referred to as hybrid physics NN models. Hybrid
physics NN models combine the physics-informed model (such as a finite element model) with an NN
model. Hybrid physics NN models are often used for residual modelling (Forssell and Lindskog Ŵżżź) (Thompson
and Kramer Ŵżżŷ) (San and Maulik ŵųŴŻ) (Kani and Elsheikh ŵųŴź), in which the output of the physic-based
model is used as input to an NN model (Karpatne et al. ŵųŴź), replacing part of physic-based model with
the NN (Parish and Duraisamy ŵųŴŹ) (Liang Zhang et al. ŵųŴż); e.g., combining results from the physics
models and NN model (Chen et al. ŵųŴŻ) (Paolucci et al. ŵųŴŻ), as well as using the NN to refine the inversion
models obtained from physics models in inverse modelling (Bubba et al. ŵųŴż) (Jin et al. ŵųŴź) (Senouf
et al. ŵųŴż) (Ulyanov et al. ŵųŴŻ).

Table Ŷ.Ŵ summarizes different physics-informed ML methods, along with the benefits of using
such methods, such as increased ML model performance, interpretability, accuracy, and generalization to
other data sets. It also indicates when they are generally applicable (usage); e.g., when there is a known
physical equation, intermediate physical variables, previously trained weights, and whether a physics
model, such as finite element model, is available.

For this project, ML algorithms were used to overcome challenges with traditional numerical
methods, such as computational cost and potential alleviation of convergence issues. In this chapter, the
feed-forward pass of an NN for a static problem is presented using an SDOF with a single stiffness value.
The physics-informed NN methods discussed in this chapter include the physics-informed loss function
and the hybrid physics NN model. To learn the solution to a static problem, weight initialization of the NN
and data normalization can be very important and these were explored based on the NN performance.
The best NN architecture was identified from different hyperparameters, and the results and conclusions
are presented for the static problem at the end of the chapter.

Ŷ.ŵ. Static Model Description

In this study, a static load, F , was applied to a linear-elastic spring with stiffness, k, to estimate
the displacement, x, using an NN; the spring model is shown in figure Ŷ.ŵ. A linear-elastic model for static
loading can be calculated by using Hooke’s law:

F = kx (Ŷ.Ŵ)

The NN inputs were the load, F , and stiffness k, and the output of the NN was the displacement,
x, of the spring. A constant stiffness of k = 1 was initially selected to make the load in Equation Ŷ.Ŵ equal

ŵź

Table Ŷ.Ŵ: Different types of ML methods (Willard et al. ŵųŵų)

Physics-informed ML Method Benefit Usage

Loss Function
Improved accuracy,

Improved generalization,
Reduced number of iterations

Known physical equation

Architecture
Improved interpretability,
Improved accuracy,

Improved generalization

Hard constraints,
or intermediate physical variables

Initialization
Reduced number of iterations

Improved accuracy
Similar trained ML model available

used for different purposes

Hybrid Improved accuracy Physics model already available

Figure Ŷ.ŵ: Linear-elastic spring

to the displacement, or F = x, to gain insight into how the NN performed with a simple example.

Ŷ.Ŷ. Neural Network Estimation

The NN is trained by updating the weights and bias to estimate the solution of a problem. For a
single hidden layer with two neurons, as shown in figure Ŷ.Ŷ, the feedforward NN without bias equation
is:

(1) (1)a1 = w F + w k11 12
(1) (1)a2 = w F + w k21 22

For an activation function g(.):

ŵŻ

(1) (1)a1 = g(w F + w k)11 12
(1) (1)a2 = g(w F + w k)21 22

(2) (2)ex = w a1 + w a211 12

(2) (1) (1) (2) (1) (1)ex = w F + w k) + w F + w k) (Ŷ.ŵ)
11 g(w11 12 12 g(w21 22

(k)where wij are the weights and i refers to node in the connection layer, j refers to the node to
the originating layer, and k refers to the number of layers. xe refers to the estimate from the NN.

Figure Ŷ.Ŷ: NN with single hidden layer, two neurons and no bias

Hooke’s law in Equation Ŷ.Ŵ is of a linear form, but Equation Ŷ.ŵ using the NN represents a nonlinear
form. If the NN is used without a nonlinear, i.e., linear, activation function, then Equation Ŷ.ŵ becomes

(2) (1) (2) (1) (2) (1) (2) (1)ex = w F + w k + w F + w k (Ŷ.Ŷ)
11 w11 11 w12 12 w21 12 w22

which simplifies to:

(2) (1) (2) (1) (2) (1) (2) (1)F(w + w) = ex − k(w + w) (Ŷ.ŷ)
11 w11 12 w21 11 w12 12 w22

For the simple example, when Equation k = 1 in Ŷ.Ŵ and F = x, the load weight terms should
add to unity, and the stiffness weight terms should add to zero.

ŵż

Ŷ.ŷ. Weight Initialization

To initiate the learning process, two different weight initializations were explored, including Xavier
and He weight initializations. Weights and bias initialization are important for training an NN. Normally,
weights and bias are initialized as small random values, but these random values can be problematic as
the NN can get stuck in non-optimal minima, and the algorithm can fail to find the best solution for the
problem (Goodfellow et al. ŵųŴŹ).

ŵ.Ŷ.ų. Xavier Weight Initialization

There are many different activation functions that can be used to introduce nonlinearity in the
NN. These activation functions have unique properties, that can change the performance of the NN. The
weight initialization introduced for sigmoid and tanh activation functions is known as Xavier or Glorot
initialization (Glorot and Bengio ŵųŴų).

The Xavier weight initialization assumes a uniform distribution for random numbers between the
range of [−1/sqrt(n + m), 1/sqrt(n + m)], where n is the number of input neurons and m is the number
of output neurons.

ŵ.Ŷ.Ŵ. He Weight Initialization

Another type of weight initialization is the He initialization technique introduced by Kaiming He
(He et al. ŵųŴŸ). In his study, He stated that there is no evidence of ”clear superiority” of the He weight
initialization over the Xavier initialization, but the He initialization is often used for ReLU activation function.

The He weight initialization assumes a uniform distribution having a mean of zero and a standard
deviation of sqrt(2/n + m).

Ŷ.Ÿ. Data Normalization

Several methods of normalizing the data were explored. If one input value is too big compared
to other input values in the data, it will be assigned a higher weight value and dominate the results. The
gradient descent algorithm is:

(l) (l) ∂C(w,b)w = w − αij ij (l)
∂wij

∂C (l) (nl)= h δ(l) j i∂wij

(nl) (nl) (nl)δi = −(yi − h)g
′
(zii)

Ŷų

which can be rewritten as:

(l) (l) (l) (nl) (nl)w = w − α[h − (yi − h)g
′
(z)] (Ŷ.Ÿ)

ij ij j i i

The presence of h(nl) in Equation Ŷ.Ÿ shows that the inputs affect the step size α in the gradient i

descent algorithm. Normalizing the inputs on the same scale helps the gradient descent algorithm to
converge quickly.

In this study, Min-Max normalization was utilized. Min-Max normalization or feature scaling is a
method to normalize the data so that the data set has a range between Ŵ.ų and ŵ.ų.

′ Inputs − min(Input)
Inputs = + 1 (Ŷ.Ź)

max(Input) − min(Input)

For the k = 1 problem in Equation Ŷ.Ŵ, the following normalization techniques were studied:

Ŵ. Normalizing the load, F , only by Min-Max normalization.

ŵ. Normalizing the load, F , and displacement, x, by Min-Max normalization

Ŷ.Ź. Physics Learning NN

The NN was trained to satisfy Hooke’s law by using the normalized data from Equation Ŷ.Ź. The
physical equation in Equation Ŷ.Ŵ was incorporated into the learning by adding the residual calculated
from OpenSees into the NN loss function. The inputs (F and k) are given to the NN to estimate the output
(x), which is then given to OpenSees to calculate the unbalance force and residual. The residual is added
to the loss function and then backpropagated upon to update the weights of the model (figure Ŷ.ŷ).

Ŵ. Soft constraints: The loss function is minimized to improve the quality of the NN rather than obtain
a certain precision. There are two limitations to loss functions with soft constraints. First, there is
no guarantee that the constraints will be satisfied. Second, it is necessary to choose the loss terms
in the loss function wisely according to their relative importance to the problem (Márquez-Neila
et al. ŵųŴź).

ŵ. Hard constraints: The loss function is minimized to be near-equal to the machine precision if the
solution to the problem exists (Márquez-Neila et al. ŵųŴź). There are limitations of having loss
functions with hard constraints as the NN often needs to learn millions of free parameters. This
can overwhelm the optimization problem (Pathak et al. ŵųŴŸ).

ŶŴ

Figure Ŷ.ŷ: Physics neural network

Ŷ. Regularizer: The residual can be added as a penalty to the loss function. This makes the physics
term a regularizer which is minimized by the NN.

Herein, physics was embedded into the loss function during the training process by using soft
constraints with either the data or the residual in the loss function. Two different types of loss functions
were utilized:

• Residual loss R, using the unbalance force vector, Pu, for Equation Ŷ.Ŵ

Pu = F − kex (Ŷ.ź)

Loss = LR = (Pu)
T(Pu) (Ŷ.Ż)

• Energy loss, using the unbalance force vector and differences between the output displacements
from ML, x, and the training data displacements from OpenSees, xe, defined as:

Ŷŵ

Loss = LE = |(ex − x)T(Pu)| (Ŷ.ż)

Unlike residual loss, energy loss minimizes the error between both the displacements and unbalance
forces.

Ŷ.ź. Neural Network Architecture

Several NN architectures were explored to determine the best number of neurons, hidden layers,
and activation functions. A good NN architecture design is necessary to have good performance. As discussed
in Chapter ŵ, an NN becomes more flexible when more hidden layers are added to the network, but too
many hidden layers can cause the NN to overfit the data. Once an NN architecture was selected, loss
functions including the residual were utilized.

ŵ.Ź.ų. One Layer without Bias Neural Network

One hidden layer NN without bias was modeled with the normalization techniques for k = 1
and without the physics loss functions. Figure Ŷ.Ŷ shows a NN with a single hidden layer, two neurons,
and no bias with a learning rate of Ŵe-Ŷ and an Adam optimizer. Table Ŷ.ŵ shows the performance of
the NN for different normalization techniques. Training was discontinued after a maximum number of
Ÿų,ųųų epochs. Not all NNs converged within the Ÿų,ųųų epochs. Herein, convergence was defined by a
tolerance of Ŵe-Ŵŵ.

Table Ŷ.ŵ: Neural network with single hidden layer and no bias

Activation function Data normalization type MSE test error Iterations

tanh
ReLU
Linear
tanh
ReLU
Linear

Normalizing Load
Normalizing Load
Normalizing Load

Normalizing Load + Displacement
Normalizing Load + Displacement
Normalizing Load + Displacement

Ŵ.ŵųŹeŴų
Ŵ.ŴŶźe-ŵŴ
Ŵ.ŷŸųe-ŵŴ
Ŵ.ŶŷŴeŴų
Ż.źŷŸe-ųŻ
ŵ.Ŵųźe-Ŵŵ

Ÿųųųų
ŴŶŻų
żŻŶ
Ÿųųųų
ŴŹ
ŴŸ

The normalization techniques converged with the ReLU and linear activation function. The tanh
activation function did not converge, because of the nonlinearity introduced into Equation Ŷ.ŵ. Figure ŵ.Ź
in Chapter ŵ also shows that tanh is not suitable for a linear function such as F = x.

ŶŶ

ŵ.Ź.Ŵ. Two Layer without Bias Neural Network

A two hidden layer NN without bias was modeled for each normalization techniques without
physics. The two hidden layers had two neurons and no bias, with a learning rate of Ŵe-Ŷ and an Adam
optimizer. Table Ŷ.Ŷ shows the performance of the NN for different normalization techniques

Table Ŷ.Ŷ: Neural network with two hidden layers and no bias

Activation function Data normalization type MSE test error Iterations

tanh
ReLU
Linear
tanh
ReLU
Linear

Normalizing Load
Normalizing Load
Normalizing Load

Normalizing Load + Displacement
Normalizing Load + Displacement
Normalizing Load + Displacement

Ŵ.ŵųŹeŴų
Ÿ.żųŵe-ŵų
ŵ.ŸŴźe-ŵų
ŷųżŷ

Ź.żŸźe-Ŵų
Ŵ.ŷŵŷe-ŴŴ

Ÿųųųų
ŴŻŻ
ŴŸŵ

Ÿųųųų
Ŵŷ
ŴŶ

The two layers without bias became more flexible and fewer iterations were needed for convergence
compared to the one layer case. The results for the normalization type followed a similar trend similar to
that of the one layer case, with ReLU and linear activation functions outperforming tanh.

ŵ.Ź.ŵ. Two Layer with Bias Neural Network

Figure Ŷ.Ÿ shows two hidden layers with bias with two neurons per layer. Table Ŷ.ŷ and Table Ŷ.Ÿ
show the results for a two hidden layer NN with bias and two neurons, with and without the residual.
Without and with physics, non-convergence was considered at Ÿų,ųųų and Ÿ,ųųų epochs, respectively.
The learning rate was Ŵe-Ŷ with an Adam optimizer.

Table Ŷ.ŷ: Neural network with two hidden layers and bias

Activation function Data normalization type MSE test error Iterations

tanh
ReLU
Linear
tanh
ReLU
Linear

Normalizing Load
Normalizing Load
Normalizing Load

Normalizing Load + Displacement
Normalizing Load + Displacement
Normalizing Load + Displacement

Ŵ.ŵųŹeŴų
Ŵ.żŷźe-ŵŴ
Ż.źżże-ŵŴ
ŹŴŸŻ

Ŷ.źŵŻe-ŵų
Ŵ.ŻŻże-Ŵż

Ÿųųųų
Żŷ
ŸŹ

Ÿųųųų
ź
ŷ

Of the architectures studied, two layers with bias resulted in the least number of iterations for
convergence. ReLU and linear outperformed tanh in every NN architecture for k = Ŵ, for all the normalization
techniques with and without physics. The residual and energy loss functions both took the same number
of epochs to converge for the ReLU and tanh activation functions. The normalization technique, which
included normalizing the load and displacement, did not perform well with the energy loss, as the unbalance
force and the error had different units. For the data normalized case, the unbalance force was in the
original domain (not normalized) for OpenSees to analyze the results, whereas displacement values were

Ŷŷ

Figure Ŷ.Ÿ: NN with two hidden layers, two neurons, and bias

Table Ŷ.Ÿ: Neural network with two hidden layers and bias with physics loss function

Physics loss
function

Activation
function

Data normalization
type

MSE
test error Iterations

LR tanh Normalizing Load ŵ.źŸŹeż Ÿųųų
LR ReLU Normalizing Load Ż.ŹŸŶe-ŵŵ ŻŸ
LR Linear Normalizing Load ŷ.Ŷŷŷe-ŵŴ ŸŹ
LE tanh Normalizing Load ŵ.źŸŹeż Ÿųųų
LE ReLU Normalizing Load Ŵ.Żżųe-ŵŴ ŻŸ
LE Linear Normalizing Load ŷ.Ŷŷŷe-ŵŴ ŸŹ
LR tanh Normalizing Load + Displacement ŵ.źŸŹeż Ÿųųų
LR ReLU Normalizing Load + Displacement ŵ.ųżŷe-ŵŴ ŻŸ
LR Linear Normalizing Load + Displacement ŷ.Ŷŷŷe-ŵŴ ŸŹ
LE tanh Normalizing Load + Displacement Ź.żŶźeż Ÿųųų
LE ReLU Normalizing Load + Displacement Ź.żŶźeż Ÿųųų
LE Linear Normalizing Load + Displacement Ź.żŶźeż Ÿųųų

normalized. The residual loss function did not have this problem because it involved only the unbalance
force from OpenSees.

Ŷ.Ż. Hyperparameter Tuning

The effects of batch size and the number of neurons in the hidden layers were studied to select
the best-trained model. The learning rate was Ŵe-Ŷ with the activation function ReLU with load normalization.
Figure Ŷ.Ź shows that increasing the number of neurons in the first hidden layer from ŵ to Ŵų resulted in a

ŶŸ

decreasing number of iterations. For one layer, the decrease in the number of iterations was evident, but
for the two layers with and without bias the number of iterations decreased only slightly. The flexibility of
the network reduced the needed number of iterations with changes in the NN architecture. The number
of iterations was also reduced with an increasing number of neurons in the second hidden layer (figure
Ŷ.ź), while the first layer hidden neurons were kept constant (two neurons).

Figure Ŷ.Ź: Number of neurons in first hidden layer vs number of iterations

Figure Ŷ.ź: Number of neurons in second hidden layer vs number of iterations

Figure Ŷ.Ż shows the effect of batch size on the number of iterations for different NN architectures.
Training the NN with a small batch size made the NN converge faster, as there were more updates to the

ŶŹ

Figure Ŷ.Ż: Batch size vs number of iterations

NN and the weights updated more frequently.

Ŷ.ż. Results

The neural network architecture with two hidden layers with bias having two neurons in each
layer had the best performance with a static SDOF and k = 1. The normalization technique resulting in
the smallest number of iterations was normalizing load, F , and displacement, x, by the Min-Max normalization.
The activation function that performed the best was the linear function, which best fit Hooke’s Law, followed
by ReLU. Figure Ŷ.ż shows the results of the actual value and the estimated predicted value from the NN.

The results were linear when k = 1, and the NN well estimated the values from OpenSees. These
results were trained with a learning rate of Ŵe-Ŷ and a batch size of ŴŹ with the Adam optimizer.

The convergence of the NN was smooth (Figure Ŷ.Ŵų) for both normalization types. The NN with
the gradient descent algorithm and a learning rate of Ŵe-Ŷ resulted in convergence issues. The Adam
algorithm was found to be more stable than the gradient descent algorithm for this problem. A very small
learning rate of Ŵe-Ż was needed for the gradient descent algorithm to reach convergence.

Regardless of whether the loss function used physics, the NNs performed similarly (table Ŷ.ŷ).
The residual and energy loss functions converged for the same number of iterations as that without physics
for the ReLU and linear activation function. The physics-informed loss functions did not have a significant
effect on convergence because the dataset was linear, and the NN could easily identify patterns with and
without physics.

Ŷź

Figure Ŷ.ż: Results of the NN for static problem when k = 1

Figure Ŷ.Ŵų: MSE error vs number of iterations. (a) Normalizing load and displacement, (b) Normalizing
load

Ŷ.Ŵų. Extrapolation

The performance of the NN was checked by extrapolating the dataset and using the NN model to
estimate values far away from the original training dataset. The ReLU activation function performed in a

ŶŻ

manner similar to that of the linear activation function, as shown in table Ŷ.ŵ, table Ŷ.Ŷ, and table Ŷ.ŷ, but
it failed to estimate negative values of displacement (figure Ŷ.ŴŴ). The ReLU activation function does not
estimate negative values because it is a piecewise linear activation function that is zero when the output
is negative and linear when the output is positive. In contrast, the linear activation function estimates
positive and negative values (figure Ŷ.Ŵŵ), as it best matches Hooke’s law.

Figure Ŷ.ŴŴ: ReLU extrapolation

Figure Ŷ.Ŵŵ: Linear extrapolation

Ŷż

Ŷ.ŴŴ. Conclusions

An NN was trained by using an elastic SDOF with a load, F , and a stiffness, k, for displacement, x.
The stiffness of the model was assumed to be constant. Physics was included in the loss function of the
NN as a soft constraint and backpropagated to update the loss function. Several types of normalization
techniques were used to assess the performance of the NN. Different types of NN architectures with
different numbers of neurons and activation functions were studied to select the one most suited to this
problem.

The performance of the NN was best when the ReLU and linear activation functions were used
because Hooke’s law is linear. The ReLU and linear activation functions performed similarly when the
testing set had positive values, but ReLU failed to perform when the testing set had negative values because
ReLU returns zero on the negative branch. Tanh, a nonlinear activation function, did not converge due to
the linear nature of the dataset.

Normalizing the inputs and the outputs sped up the NN, with fewer iterations needed for convergence.
Physics was introduced into the NN by embedding a residual extracted from OpenSees into the loss function.
The performance of the NN changed a little by incorporating physics into the NN. Both the physics residual
and energy loss functions performed similarly with k = 1.

This study was kept relatively simple to select an appropriate NN architecture. The structural
model was for an SDOF with constant stiffness k = 1 and a linear force-displacement relationship. The
next chapter investigates the use of an NN with variable stiffness with and without physics, which can be
extended for both single- and multiple-degree-of-freedom-systems and nonlinear response in the future.

ŷų

ŷ. STATIC MODEL WITH VARYING STIFFNESS

ŷ.Ŵ. Introduction

Neural networks (NN) are data-driven in nature, as they rely only on the available dataset values
during training to update the weights of the NN model. The NN maps the inputs to the outputs, calculates
the loss, and then updates the weights of the network to reduce the loss function. Thus, the underlying
physical equations can be disregarded by the NN when a solution for the problem is estimated. Since
the NN does not use scientific theory, it can be limited to performing well only within the range of the
training dataset. Therefore, a physics-informed NN model that uses both scientific theory and is based on
data-driven concepts can be advantageous (figure Ŷ.Ŵ).

In this project, the loss function of the NN was modified by adding the residual, which penalizes
the NN if the governing equations are not satisfied. Embedding the residual into the loss function helps
in minimizing overfitting of the data and makes the NN more reliable, and it can help in reducing the
number of iterations for convergence during training (Willard et al. ŵųŵų).

This chapter extends the previous chapter by using a static model with variable stiffness. The
feedforward pass with the variable stiffness problem was compared with the physical equations for the
static model, and it was inferred that the NN could not learn the physical equation in its original form.
The form of the physical equation was changed by applying log normalization to the data and different
loss function performance was evaluated in a manner similar to that described in the previous chapter.

ŷ.ŵ. Static Model Description

As discussed in Chapter Ŷ, Hooke’s law was learned by using an SDOF. Work described in Chapter
Ŷ was limited to cases of a single stiffness value. Here, multiple stiffness values were used during the
training so that the learned model could better generalize to different structures with different stiffnesses.

Different static models with random stiffness values were subjected to random force values to
form a training set for the NN. The NN inputs included the stiffness and force values. The output of the
NN was the displacement for these different force-stiffness conditions. The model was designed as a
zero-length element in OpenSees.

ŷ.Ŷ. Neural Network Feedforward Calculation

The NN estimated displacements by comparing the predicted values output by the NN to the
training values extracted from OpenSees, characterizing the loss. The NN minimizes loss by updating the

ŷŴ

weights and bias to minimize the error between the training values and estimates from the NN. The larger
the loss, the larger error from the machine learning model.

To calculate the loss, estimates for displacements were calculated from the inputs using a feedforward
pass.

For a single layer NN with two neurons (figure Ŷ.Ŷ), the feedforward pass calculation for two
inputs (k and F) to get an estimate of the output (x) was like that defined in Chapter Ŷ.

To minimize the loss and make the estimates of the NN as close to the original value as possible,
the NN had to learn Hooke’s Law. Rearranging Equation Ŷ.Ŵ for the displacements, x:

x =
F (ŷ.Ŵ)
k

A comparison of Equation ŷ.Ŵ and Equation Ŷ.ŷ, shows that the estimates from the NN can never
be equal no matter which weight values are used. Therefore, Equation ŷ.Ŵ and Equation Ŷ.ŷ were reformed
with log normalization to better represent Hooke’s Law and reduce the loss of the NN.

ŷ.ŷ. Log Normalization

To align the form of the NN to be similar to Hooke’s Law, log normalization was applied to Equation
ŷ.Ŵ, and the log-normalized values were used in Equation Ŷ.ŷ. Equation ŷ.Ŵ then became:

ln(x) = ln(F) − ln(k) (ŷ.ŵ)

and Equation Ŷ.ŷ became:

(2) (1) (1) (2) (1) (1)ln(ex) = w11 g(w11 ln(F) + w12 ln(k)) + w12 g(w21 ln(F) + w22 ln(k)) (ŷ.Ŷ)

With this normalization, x and xe could be equal to each other, given some combination of weights
for the loading and stiffness terms in Equation Ŷ.ŷ.

ŷ.Ÿ. Physics-Informed NN

The NN was trained by using the log-normalized data in Equation ŷ.ŵ. Figure ŷ.Ŵ shows a physics-informed
NN, wherein in the training phase, the inputs (F and k) were mapped to the output/estimates (x) to

ŷŵ

calculate the loss. The estimates of the NN were used to calculate the unbalance force and residual using
OpenSees and they were added to the loss function. The loss function, which included the loss from the
data and the residual, was then back propagated to update the weights of the physics-informed NN. In
this fashion, the physical equations were embedded into the learning process. The unbalance force (Pu)
and residual (LR) were like those used in Chapter Ŷ.

Figure ŷ.Ŵ: Physics neural network

The residual was added to the loss function as a regularizer term so that it could be used in combination
with the data-driven loss. A parameter λ was used for the “physics” part in the loss function to decide
how much the NN should learn from the physics of the problem versus the data. This allowed for control
of the NN adoption between the physics and data-driven part of the problem. Equation ŷ.ŷ shows the
regularization constraint for a static problem.

loss = LD + λ LR (ŷ.ŷ)

And,

ŷŶ

X
LD =

1
(xe − x)2

(ŷ.Ÿ)n
i=1

where xe are the estimates from the NN, x are the original outputs, and LR is the physics residual
from OpenSees.

The λ term in the regularizer is an unknown value and varies based on the relative importance of
the physical equations versus the training data for the problem. Many physics-informed neural networks
have used Equation ŷ.ŷ to improve the accuracy of the NN estimates (Raissi, Z. Wang, et al. ŵųŴż) (Y. Yang
and Perdikaris ŵųŴż) (Kharazmi et al. ŵųŴż), but the effects of λ are problem dependent. An improper
selection of the λ value can lead to potentially unstable and unreliable results (Raissi, Yazdani, et al. ŵųŴŻ)
(Sun et al. ŵųŵų).

This study explored the performance of soft constraints and regularization of the NN. The soft
constraint term include the data-driven or residual in the loss but not both, whereas the regularization
constraint contains both the data-driven and physics of the problem.

ŷ.Ź. Regularization Loss Function with Physics

Equation ŷ.ŷ uses a penalty (λ) on the residual term in addition to the data-driven loss. Using
the residual as a regularizer in the loss function can be interpreted as weighted training in combination of
learning the best fit of the data (data-driven).

One approach has used a varying λ that was updated by the NN after each iteration (S. Wang
et al. ŵųŵŴ). The λ value is a function of the weights of the NN, which are updated after each iteration.
This approach optimizes the value of λ just as the NN weights:

Max(w)
λ = (ŷ.Ź)

Avg(w)

Table ŷ.Ŵ shows different λ values tested against the performance of the NN for Ÿ,ųųų epochs, an
Adam optimizer, and a learning rate of Ŵe-ųŶ. The convergence criterion was Ŵe-Ŵŵ. The linear activation
function converged for all λ values except for Ŵe-ųż. The ReLU activation function did not converge but
still has a small test loss.

ŷ.ź. Results

A NN with two hidden layers and bias was trained for the static model. The training dataset was
normalized by using the aforementioned Log normalization technique. The NN was trained with and

ŷŷ

Table ŷ.Ŵ: NN results for different λ values

λ Activation Function MSE test error Epochs

Ŵe-ųż

Ŵe-ųŹ

ReLU
Linear
ReLU
Linear

Ŵ.ŻŻE+ŵź
ŷ.źŴe+ŵŻ
ŷ.ŵŵE-ŴŶ
Ŵ.ŷźe-ŵŴ

Ÿųųų
Ÿųųų
Ÿųųų
ŴŶųŴ

Ŵe-ųŶ

Ŵ

Ŵe+ųŶ

Varying λ

ReLU
Linear
ReLU
Linear
ReLU
Linear
ReLU
Linear

ŷ.ŵŷe-ŵŷ
ŷ.ŵŷe-ŵŷ
Ŵ.ŸŴE-ųŸ
Ŵ.ŷże-ŵź
ŷ.ŴŴE-ųŹ
ŷ.żŷe-ŵż
ŷ.ŹŶE-ųź
Ŵ.Ŷże-ŴŶ

Ÿųųų
ŴŹŴŶ
Ÿųųų
ŴźŷŶ
Ÿųųų
ŵųųŹ
Ÿųųų
ŴŹŹż

without the activation function g(.) in Equation ŷ.Ŷ; i.e., the without case was equivalent to using a linear
activation function. The NN results were trained with a learning rate of Ŵe-Ŷ with a batch size of ŴŹ and
using an Adam optimizer.

Figure ŷ.ŵ: Test results of the NN for varying stiffness of SDOF system

Figure ŷ.ŵ shows results of the static model from OpenSees, which were near those estimated
by the NN. Figure ŷ.Ŷ plots different loss functions with different activation functions against the number
of iterations (epochs). Most of the loss functions did not converge after Ÿ,ųųų epochs. However, even
without convergence, figure ŷ.ŷ shows that they performed well on the test set, and the loss was small.

ŷŸ

All loss functions performed well when the NN was mapping the inputs to the outputs linearly using the
log normalization. When the ReLU activation function was used and nonlinearity was introduced into the
NN, the results did not converge but produced a small loss value after Ÿ,ųųų epochs. The Ldata and LE

functions with linear (or no activation function) converged, as can be seen in figure ŷ.Ŷ. The performance
of the NN did not change when the residual was introduced into the loss function, as the dataset could be
easily fit with the log normalization form.

Figure ŷ.Ŷ: Different types of loss functions vs number of iterations

ŷ.Ż. Conclusions

An NN was trained for an elastic SDOF model with variable stiffness. Physics was included in the
loss functions of the NN, and different loss function performances were compared. A log normalization
technique was applied to the NN feedforward pass so that the NN could learn the linear form of the underlying
physical equation of the static model. The NN was able to estimate the values from OpenSees and performed
well on the extrapolated values (figure ŷ.Ÿ).

The data-driven NN and physics-informed NN had similar performance for the static model. Adding
physics to the loss function did not affect the results because this was a simple model and the results
were linear. The NN with a linear activation function performed slightly better than the NN with nonlinear
activation functions because the model was linear-elastic.

ŷŹ

Figure ŷ.ŷ: Different types of loss functions vs test loss

Multiple degree of freedom systems (MDOF) should be studied in the future to evaluate the
performance of the physics-informed loss function. The effects of nonlinearity on the performance of
the NN should also be studied. Having a more complex problem, such as dynamic analysis, can be used to
further evaluate the difference in performance between data-driven and physics-informed loss functions.
This is explored in the next chapter.

ŷź

Figure ŷ.Ÿ: Extrapolation results with training

ŷŻ

Ÿ. DYNAMIC MODEL

Ÿ.Ŵ. Introduction

Machine learning (ML) and deep learning (DL) algorithms have been used in structural engineering
applications (Thai ŵųŵŵ), such as estimating the load-bearing capacity of isolated structures, the mechanical
properties of concrete, structural health monitoring, the fire resistance of structures, and analysis and
design of structures.

Many ML and DL algorithms do not use scientific theory when estimating the results. Thus, the
results of ML and DL algorithms are purely data-driven, which can be a problem in terms of robustness of
the model and interpretation. In this study, the equations of motion were included into the ML and DL
algorithms in an effort to make the results more reliable. This chapter extends the previous two chapters
by descripting the use of an SDOF oscillator subjected to free vibration using an initial displacement value.

Ÿ.ŵ. Dynamic Model Description

A dynamics model consisting of a spring with a mass, m, and stiffness, k, was initially displaced
with a displacement, x, and then the free vibration of the system was recorded. The free vibration of a
dynamic system with mass, m, and stiffness, k in time, t, is given as:

mẍ+ kx = 0 (Ÿ.Ŵ)

Dividing by the mass,

ẍ+ ω2 x = 0 (Ÿ.ŵ)

where ẍ is the acceleration of a single degree of freedom oscillator at time t, x is the displacement
of a single degree of freedom oscillator at time t, and ω is the circular frequency of a single degree of
freedom oscillator.

A single degree of freedom (SDOF) dynamic problem with m = 1 and k = 1 was subjected to
random initial displacements. The displacement values were recorded for time t seconds. The NN inputs
were the acceleration at time t, circular frequency and displacement of the dynamic system at time t. The
output of the NN was the displacement of the dynamic system at the next time step, t + 1.

ŷż

Ÿ.Ŷ. Recurrent Neural Network

A recurrent neural network (RNN) is a deep learning algorithm that makes predictions using sequential
data. A simple neural network or artificial neural network (ANN) is trained by treating each data point as
an individual input even when the data points are related to each other. An RNN takes advantage of the
correlation between data points and trains by using the prior information of the data points. RNNs are
mostly used for time-series forecasting (Coulibaly and Baldwin ŵųųŸ) and natural language processing
(Yin et al. ŵųŴź).

Ÿ.ŷ. RNN Architectures

RNN uses sequence information to improve the outputs. The architecture of an RNN is like an
ANN with respect to having input layers, hidden layers, and output layers. The only difference is that an
RNN keeps the output layer information for the next input layer. Figure Ÿ.Ŵ shows an ANN architecture on
the left and RNN architecture on the right.

Figure Ÿ.Ŵ: a) ANN architecture, b) RNN architecture

The RNN architecture can be varied by changing the number of inputs and outputs. The variations
in the type of RNN architecture depend on the type of RNN needed to solve the problem. Figure Ÿ.ŵ
shows several architectures; one-to-one NN architecture is an ANN whereas other variations show RNN
architectures.

The many-to-one is a recurrent architecture in which many inputs are given to the NN, and it
assigns weights to all the inputs and learns from the combination of the many inputs to predict one output.
The one-to-many RNN architecture has many outputs, which are combined to learn from a single input.

Ÿų

Another type of RNN architecture is many-to-many, in which many inputs are combined to predict many
outputs all at once.

Figure Ÿ.ŵ: Variation in neural network architectures with different number of inputs and outputs

Ÿ.Ÿ. RNN Forward Pass

The RNN forward pass is like the forward pass of an ANN, the only difference being that the previous
output information is used in the next input. The forward pass for an RNN architecture, shown in figure
Ÿ.Ŷ with input I , hidden state h and output O from time step t − 2 to time step t +1, is calculated at each
time step as:

ht = g1(Whht−1 + WiIt) (Ÿ.Ŷ)

Ot = g2(Woht) (Ÿ.ŷ)

Where Wi,Wh and Wo are the weights to the input, hidden, and output layer respectively; g1(.)
and g2(.) are the activation functions; and ht−1 are the previous hidden state.

Ÿ.Ź. Data Normalization

An NN is sensitive to the information given to it as input. This is mainly due to how the NN estimates
the values from the inputs through the forward pass equation. The step size of the gradient descent
algorithm is influenced by the inputs to the NN. Therefore, it is essential to find a good normalization
technique that best represents the features of the raw data efficiently. Many data normalization techniques
have been discussed in (D. Singh and B. Singh ŵųŵų), which are described below.

ŸŴ

Figure Ÿ.Ŷ: RNN forward pass

ŷ.Ÿ.ų. Min-Max Normalization

The Min-Max normalization technique, also known as feature scaling (FS), normalizes the input
values by scaling the inputs to a desired range. In this study, the input values were normalized between
Ŵ and ŵ, as FS used with some other function that involves the log, and the normal ų to Ŵ value would not
work. The min-max normalization is:

′ Inputs − min(Input)
Inputs = + 1 (Ÿ.Ÿ)

max(Input) − min(Input)

ŷ.Ÿ.Ŵ. Variable Stability Scaling (VSS)

The variable stability scaling method is similar to scaling the inputs to a standard normal distribution.
The difference is that VSS multiplies the standard normal distribution by the mean and divides it by the
standard deviation of the data, also known as coefficient of variation. This normalization causes the input
values with a large standard deviation to have less importance and values with a smaller standard deviation
to have higher importance.

′ Inputs − µ µ
Inputs = (Ÿ.Ź)

σ σ

Ÿŵ

ŷ.Ÿ.ŵ. Pareto Scaling (PS)

The Pareto scaling method uses the standard normal distribution, but the new inputs now have a
variance equal to the standard deviation. PS minimizes the impact of noise and improves the representation
of lower concentrated values.

′ Inputs − µ
Inputs = √ (Ÿ.ź)

σ

ŷ.Ÿ.Ŷ. Power Transformation (PT)

The power transformation normalization transforms the data into having a variance that is constant
across the dataset such that the dependent variable is equal across all values of the independent variable
(homoscedasticity). PT is:

\ (Ÿ.Ż)Inputs = Inputs − min(Input) q
′ \pInputs = p − µ where p = Inputs (Ÿ.ż)

ŷ.Ÿ.ŷ. Hyperbolic Tangent Normalization (TN)

The hyperbolic tangent normalization technique was proposed by (Hampel et al. ŵųŴŴ). TN is not
sensitive to outliers.

′ 1 Inputs − µ
Inputs = (tanh(0.01()) + 1) (Ÿ.Ŵų)

2 σ

ŷ.Ÿ.Ÿ. Sigmoidal Normalization Logistic Sigmoid (LS)

The logistic sigmoid (LS) normalization is based on the activation function sigmoid of the NN. LS is
a nonlinear transformation of the inputs to reduce the effects of the outliers.

′ 1 Inputs − µ
Inputs = −q where q = (Ÿ.ŴŴ)

1 + e σ

ŸŶ

https://tanh(0.01

ŷ.Ÿ.Ź. Sigmoidal Normalization Hyperbolic Tangent (HT)

The sigmoidal hyperbolic tangent (HT) normalization is based on the activation function tanh of
the NN. HT is suitable for scaling the outliers by scaling the inputs linearly, without affecting the inputs.

−q′ 1 − e Inputs − µ
Inputs = −q where q = (Ÿ.Ŵŵ)

1 + e σ

Ÿ.ź. Many-to-One RNN Architecture

An RNN with many-to-one architecture was trained for the linear dynamic model. The many-to-one
RNN architecture is shown in figure Ÿ.ŷ for a sequence length of three. The number of neurons in the
hidden layer was equal to Ŵų with a tanh activation function, and an Adam optimizer was used for the
RNN. The many-to-one RNN architecture uses the sequence length to estimate solutions, e.g., if the sequence
length is three, then the many-to-one will analyze three values back in time to predict the fourth value. A
one-to-many RNN architecture is useful if data features are dependent on each other and previous data
are available.

Figure Ÿ.ŷ: Many-to-one RNN architecture with sequence length = Ŷ

Figure Ÿ.Ÿ shows the performance of the RNN on the training dataset with the different normalization
techniques. The normalization technique that gave the smallest loss was VSS, followed by LS and TN. VSS
had a very small training loss, as can be seen in figure Ÿ.Ÿ, because the input values were small when
normalized by VSS, and the loss between two very small values would be very small as well. However
VSS did not perform well on the test set.

Ÿŷ

Figure Ÿ.Ÿ: Training loss vs number of iterations for different normalization techniques

Ÿ.Ż. Results

After the RNN was trained, the different normalized trained RNNs were tested on a different
dataset, called the test set. Figure Ÿ.Ź shows the results for the performance of the normalized RNNs on
the test set.

The normalization technique that had the smallest test loss was TN. VSS, which performed well
on the training set did not perform well on the test set for the reason mentioned above.

Figure Ÿ.Ź: Test loss for different normalization techniques

An RNN was trained by using TN inputs with sequence length three, learning rate Ŵe-Ŷ, Ŵų neurons

ŸŸ

in the hidden layers, and an Adam optimizer. Two test results of free vibration for the linear dynamics
case, with mass m = 1 and stiffness k = 1, subjected to an initial displacement are shown in figure Ÿ.ź.
The mean squared error loss recorded for Ŵųų test files was ż.ŵżźe-ųź.

Figure Ÿ.ź: Free vibration results for two initial displacements values for the linear dynamic problem

Ÿ.ż. Future Work

This chapter presented results for the data-driven RNN, which may not be robust or interpretable
without the physical equations being embedded during learning. A physics-informed RNN should be
studied under conditions in which the loss of the RNN includes the residual. variable mass, and stiffness
values, nonlinear response, and multiple-degree-of-freedom systems should also be explored in future
studies.

ŸŹ

Ź. FLUID STRUCTURE INTERACTION

Some work has been done on using physics-informed neural networks for fluid structure interaction
(FSI) problems, but such systems have been one dimensional and linear in nature. A study by (Raissi and
Karniadakis ŵųŴź) used deep neural networks to deduce the velocity and pressure fields using the Navier-Stokes
equations. The objective of the study was to transport an incompressible Newtonian passive scalar fluid
in unbounded (external) and bounded (internal) geometries. Numerical time integration was performed
on the Navier-Stokes equation and transport equations, and a small portion of data was selected for
training the network. The success of the algorithm was based on recovering the flow velocity and pressure
fields solely from the time series data. The results of the study were quite reasonable for a Newtonian,
non-turbulent fluid and relatively noiseless and clean data. Another study by (White et al. ŵųŴża) introduced
a new method, the cluster network, with context networks and paired functions to overcome some limitations
of the fully connected neural network to approximate full solutions. The cluster network has an inductive
bias, which is stronger than the fully connected network to approximate the simple function and small
number of local solutions.

This study preliminarily introduced and implemented NNs for an FSI problem using the particle
finite element method (PFEM). The FSI problem was explored using two deep learning (DL) algorithms,
including an artificial neural network (ANN) and a point cloud convolution network (PointConv). OpenSeesPy
with the particle finite element method (PFEM) (M. Zhu and Scott ŵųŴŷ) was used to generate simulation
data for training the neural networks.

Ź.Ŵ. PFEM and NN models

The structure shown in figure Ź.Ŵ is a highly flexible structure and includes fluid-structure interaction
effects. In Figure Ź.Ŵ, L is the length of the water, H is the height of the water, l is the distance of the
water to the column, and b is the height of the column, which is the structure in this problem. These
were used as the input parameters for the NN, and the output of the NN was the displacement of the
column due to the fluid.

A PointConv (W. Wu et al. ŵųŴż) was also used to estimate FSI effects. A PointConv is a neural
network that uses point convolution and point deconvolution layers and is used to predict ŵD images. The
term ”convolution” can be thought of as a visualization of an image by the neural network.

Ź.ŵ. Results

Figure Ź.ŵ shows the results of the displacement of the column from the NN and the PFEM models.
The difference between the displacement peaks of the NN and the PFEM model was ų.ųŻŵ percent, and

Ÿź

Figure Ź.Ŵ: PFEM model with fluid structure interaction effects

Figure Ź.ŵ: Column displacement results from the NN and PFEM models

the NN curve seemed to follow the PFEM model curve reasonably well.

As the fluid-structure interaction is a time series problem, PointConv was used to predict the
pointwise state changes of the model in time tn, i.e., PointConv was trying to simulate the PFEM model.
The blue points in figure Ź.Ŷ are PointConv-predicted simulations while the orange points are PFEM results
from OpenSeesPy. PointConv clearly learned to avoid the fluid passing through boundaries and simulated
the fluid in the correct direction, but the column displaced before coming into contact with the water
and overall did not move as expected. The PointConv simulation needs more training time for a better

ŸŻ

Figure Ź.Ŷ: PointConv simulating the PFEM model

prediction of the PFEM model.

Ź.Ŷ. Summary and Conclusions

The performance of the algorithms presented in this chapter is promising. This chapter explores
different types of ML/ DL algorithms without physics-informed approaches to estimate FSI effects. For
the FSI problem, further investigation is still needed, including using the physics of PFEM during learning,
evaluating different sets of inputs/ outputs, and investigating other types of NN architectures, such as
time series prediction with the recurrent neural network instead of an ANN, as discussed in Chapter Ÿ.

Ÿż

ź. CONCLUSIONS

This pilot study applied machine learning (ML)/ deep learning (DL) algorithms to structural analysis
problems, specifically for tsunami loading on bridges. Several data-driven and physics- informed approaches
were compared to improve the reliability and interpretability of the NN.

To identify the best suited ML/ DL algorithms, the performances of several ML/DL algorithms
were explored for simple structural engineering problems; i.e., linear-elastic static analysis and linear-elastic
dynamic analysis of a single-degree-of-freedom (SDOF). For both linear-elastic static and dynamic problems,
different NN hyperparameters were studied, tested, and selected based on best performance. An artificial
neural network (ANN) was used for the static problem. A recurrent neural network (RNN) was used for
the dynamic problem. The ANN and RNN had different optimal hyper parameters, such as batch size for
the ANN and sequence length for RNN, which were tuned to find the best performance for the static and
dynamic problems, respectively. A preliminary study using ANN and PointConv were used in conjunction
with the particle finite element method (PFEM) in OpenSeesPy to estimate the effects of fluid-structure
interaction (FSI).

ź.Ŵ. Conclusions

The interpretability and reliability for the ML/ DL algorithms were evaluated by integrating the
residual with the loss function. Several different types of loss functions were tested to assess performance
in terms of the trained model’s ability to estimate new test data and extrapolate beyond the training data
domain. Conclusions are organized by chapter below:

• The physics-informed NN showed performance similar to that of the data-driven NN for the a static
problem with constant stiffness. An NN with linear-like activation functions, i.e., linear and ReLU,
had the best performance for both the physics-informed and data-driven cases, as they best matched
the linear nature of the underlying physical equations, namely Hooke’s Law. The trained ML/ DL
model performed well on the extrapolation dataset, showing that the ML/DL model could generalize
to new data conditions

• For a static model with varying stiffness, the NN algorithm produced good results when the data
were log normalized to learn the linear nature of the physical equations. The physics-informed NN
and data-driven NN showed similar performances, because the static model with varying stiffness
was a linear problem, and the data-driven approach could provide a near-perfect fit to the data,
provided that log normalization was utilized. The trained NN model performed well beyond the
training dataset, and the NN can be used to estimate new data values.

• The dynamic model was investigated for data-driven RNN. A one-to-many RNN architecture was
used to estimate the equations of motion. An RNN architecture was used so that the DL algorithm

Źų

could learn from previous values and find patterns to generalize to new values. The hyperbolic
tangent normalization (TN) dataset was best suited for the RNN for the dynamics problem.

• Two DL models were evaluated to represent the nonlinearity of the FSI problem. An ANN was used
to estimate displacement of the column that included FSI effects. Another DL model, known as
PointConv, was used to simulate the particle finite element model (PFEM). Both results showed
promise, but further investigation is needed, such as incorporating physics into the DL model and
finding the best NN architecture for FSI problems.

ź.ŵ. Limitations and Future Work

The studies presented in this report were primarily for linear-elastic SDOFs and only preliminarily
for FSI. This report contains only the data-driven part for the dynamic model and FSI problem. The point
cloud convolution model, which represents the simulation for the FSI problem, needs hypertuning and
more training time for better representation of the dataset.

Future work should include nonlinear problems, multiple-degree-of-freedom systems for the
static and dynamic cases, and physics-informed NN models for the dynamic and FSI studies. Once refined,
the ML/DL algorithm from the FSI studies could be helpful in overcoming the limitations of FSI, i.e., faster
results and overcoming convergence issues to better understand tsunami loadings on bridges

ŹŴ

REFERENCES

Adeli, Hojjat and C Yeh (ŴżŻż). “Perceptron learning in engineering design”. In: Computer-Aided Civil and
Infrastructure Engineering ŷ.ŷ, pp. ŵŷź–ŵŸŹ.

Aladsani, Muneera, Henry Burton, Saman Abdullah, and John Wallace (May ŵųŵŵ). “Explainable Machine
Learning Model for Predicting Drift Capacity of Reinforced Concrete Walls”. In: Aci Structural Journal
ŴŴż, pp. ŴżŴ–ŵųŷ. DOI: 10.14359/51734484.

Alpaydin, Ethem (ŵųŵų). Introduction to machine learning. MIT press.

Beucler, Tom, Michael Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine (ŵųŴż). “Enforcing
analytic constraints in neural-networks emulating physical systems”. In: arXiv preprint arXiv:ųŻŲŻ.ŲŲŻųŴ.

Bibal, Adrien and Benoît Frénay (ŵųŴŹ). “Interpretability of machine learning models and representations:
an introduction.” In: ESANN.

Bode, Mathis, Michael Gauding, Zeyu Lian, Dominik Denker, Marco Davidovic, Konstantin Kleinheinz,
Jenia Jitsev, and Heinz Pitsch (ŵųŵŴ). “Using physics-informed enhanced super-resolution generative
adversarial networks for subfilter modeling in turbulent reactive flows”. In: Proceedings of the Combustion
Institute ŶŻ.ŵ, pp. ŵŹŴź–ŵŹŵŸ.

Bubba, Tatiana A, Gitta Kutyniok, Matti Lassas, Maximilian März, Wojciech Samek, Samuli Siltanen, and
Vignesh Srinivasan (ŵųŴż). “Learning the invisible: a hybrid deep learning-shearlet framework for
limited angle computed tomography”. In: Inverse Problems ŶŸ.Ź, p. ųŹŷųųŵ.

Carvalho, Diogo V, Eduardo M Pereira, and Jaime S Cardoso (ŵųŴż). “Machine learning interpretability: A
survey on methods and metrics”. In: Electronics Ż.Ż, p. ŻŶŵ.

Cha, Young-Jin, Wooram Choi, and Oral Büyüköztürk (ŵųŴź). “Deep learning-based crack damage detection
using convolutional neural networks”. In: Computer-Aided Civil and Infrastructure Engineering Ŷŵ.Ÿ,
pp. ŶŹŴ–ŶźŻ.

Chen, Xinlei, Xiangxiang Xu, Xinyu Liu, Shijia Pan, Jiayou He, Hae Young Noh, Lin Zhang, and Pei Zhang
(ŵųŴŻ). “Pga: Physics guided and adaptive approach for mobile fine-grained air pollution estimation”.
In: Proceedings of the ŴŲųź ACM International Joint Conference and ŴŲųź International Symposium on
Pervasive and Ubiquitous Computing and Wearable Computers, pp. ŴŶŵŴ–ŴŶŶų.

Coulibaly, Paulin and Connely K Baldwin (ŵųųŸ). “Nonstationary hydrological time series forecasting using
nonlinear dynamic methods”. In: Journal of Hydrology Ŷųź.Ŵ-ŷ, pp. ŴŹŷ–Ŵźŷ.

Daneshvar, Mohammad Hassan and Hassan Sarmadi (ŵųŵŵ). “Unsupervised learning-based damage assessment
of full-scale civil structures under long-term and short-term monitoring”. In: Engineering Structures
ŵŸŹ, p. ŴŴŷųŸż.

Źŵ

https://doi.org/10.14359/51734484

Doan, Nguyen Anh Khoa, Wolfgang Polifke, and Luca Magri (ŵųŴż). “Physics-informed echo state networks
for chaotic systems forecasting”. In: International Conference on Computational Science. Springer,
pp. Ŵżŵ–ŴżŻ.

Dung, Cao Vu and Le Duc Anh (ŵųŴż). “Autonomous concrete crack detection using deep fully convolutional
neural network”. In: Automation in Construction żż, pp. Ÿŵ–ŸŻ.

Esmaeilzadeh, Soheil, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A Tchelepi,
Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. (ŵųŵų). “Meshfreeflownet: A physics-constrained
deep continuous space-time super-resolution framework”. In: SCŴŲ: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, pp. Ŵ–ŴŸ.

Flah, Majdi, Itzel Nunez, Wassim Ben Chaabene, and Moncef L Nehdi (ŵųŵŴ). “Machine learning algorithms
in civil structural health monitoring: a systematic review”. In: Archives of Computational Methods in
Engineering ŵŻ.ŷ, pp. ŵŹŵŴ–ŵŹŷŶ.

Forssell, Urban and Peter Lindskog (Ŵżżź). “Combining semi-physical and neural network modeling: An
example ofits usefulness”. In: IFAC Proceedings Volumes Ŷų.ŴŴ, pp. źŹź–źźų.

Geneva, Nicholas and Nicholas Zabaras (ŵųŵų). “Modeling the dynamics of PDE systems with physics-constrained
deep auto-regressive networks”. In: Journal of Computational Physics ŷųŶ, p. ŴųżųŸŹ.

Gilpin, Leilani H, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal (ŵųŴŻ). “Explaining
explanations: An overview of interpretability of machine learning”. In: ŴŲųź IEEE ŷth International
Conference on data science and advanced analytics (DSAA). IEEE, pp. Żų–Żż.

Glorot, Xavier and Yoshua Bengio (ŵųŴų). “Understanding the difficulty of training deep feedforward
neural networks”. In: Proceedings of the thirteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings, pp. ŵŷż–ŵŸŹ.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (ŵųŴŹ). Deep learning. Vol. Ŵ. ŵ. MIT
press Cambridge.

Gulikers, Tom (ŵųŴŻ). “An integrated machine learning and finite element analysis framework, applied to
composite substructures including damage”. In:

Haghighat, Ehsan and Ruben Juanes (ŵųŵų). “SciANN: A Keras/Tensorflow wrapper for scientific computations
and physics-informed deep learning using artificial neural networks”. In: arXiv preprint arXiv:ŴŲŲŷ.ŲźźŲŵ.

Hampel, Frank R, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel (ŵųŴŴ). Robust statistics:
the approach based on influence functions. Vol. ŴżŹ. John Wiley & Sons.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (ŵųŴŸ). “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”. In: CoRR abs/ŴŸųŵ.ųŴŻŸŵ. arXiv: 1502.01852.
URL: http://arxiv.org/abs/1502.01852.

ŹŶ

https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852

Heusel, Martin, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp
Hochreiter (ŵųŴź). “GANs Trained by a Two Time-Scale Update Rule Converge to a Nash Equilibrium”.
In: CoRR abs/ŴźųŹ.ųŻŸųų. arXiv: 1706.08500. URL: http://arxiv.org/abs/1706.08500.

Jin, Kyong Hwan, Michael T McCann, Emmanuel Froustey, and Michael Unser (ŵųŴź). “Deep convolutional
neural network for inverse problems in imaging”. In: IEEE Transactions on Image Processing ŵŹ.ż,
pp. ŷŸųż–ŷŸŵŵ.

Kahana, Adar, Eli Turkel, Shai Dekel, and Dan Givoli (ŵųŵų). “Obstacle segmentation based on the wave
equation and deep learning”. In: Journal of Computational Physics ŷŴŶ, p. ŴųżŷŸŻ.

Kani, J Nagoor and Ahmed H Elsheikh (ŵųŴź). “DR-RNN: A deep residual recurrent neural network for
model reduction”. In: arXiv preprint arXiv:ųŹŲŻ.ŲŲŻŵŻ.

Karpatne, Anuj, William Watkins, Jordan Read, and Vipin Kumar (ŵųŴź). “Physics-guided neural networks
(pgnn): An application in lake temperature modeling”. In: arXiv preprint arXiv:ųŹųŲ.ųųŶŵų.

Karumuri, Sharmila, Rohit Tripathy, Ilias Bilionis, and Jitesh Panchal (ŵųŵų). “Simulator-free solution of
high-dimensional stochastic elliptic partial differential equations using deep neural networks”. In:
Journal of Computational Physics ŷųŷ, p. ŴųżŴŵų.

Kharazmi, Ehsan, Zhongqiang Zhang, and George Em Karniadakis (ŵųŴż). “Variational physics-informed
neural networks for solving partial differential equations”. In: arXiv preprint arXiv:ųŻųŴ.ŲŲźŹŵ.

Kingma, Diederik P and Jimmy Ba (ŵųŴŷ). “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:ųŶųŴ.ŸŻźŲ.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (ŵųŴŵ). “Imagenet classification with deep convolutional
neural networks”. In: Advances in neural information processing systems ŵŸ, pp. Ŵųżź–ŴŴųŸ.

LeCun, Yann, D Touresky, G Hinton, and T Sejnowski (ŴżŻŻ). “A theoretical framework for back-propagation”.
In: Proceedings of the ųŻźź connectionist models summer school. Vol. Ŵ, pp. ŵŴ–ŵŻ.

Loiseau, Jean-Christophe and Steven L Brunton (ŵųŴŻ). “Constrained sparse Galerkin regression”. In: Journal
of Fluid Mechanics ŻŶŻ, pp. ŷŵ–Źź.

M, Rekha (June ŵųŵų). The Ascent of Gradient Descent. URL: https://blog.clairvoyantsoft.com/
the-ascent-of-gradient-descent-23356390836f.

Márquez-Neila, Pablo, Mathieu Salzmann, and Pascal Fua (ŵųŴź). “Imposing Hard Constraints on Deep
Networks: Promises and Limitations”. In: CoRR abs/ŴźųŹ.ųŵųŵŸ. arXiv: 1706.02025. URL: http://
arxiv.org/abs/1706.02025.

McCulloch, Warren S and Walter Pitts (ŴżŷŶ). “A logical calculus of the ideas immanent in nervous activity”.
In: The bulletin of mathematical biophysics Ÿ.ŷ, pp. ŴŴŸ–ŴŶŶ.

Moraffah, Raha, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and Huan Liu (ŵųŵų). “Causal interpretability
for machine learning-problems, methods and evaluation”. In: ACM SIGKDD Explorations Newsletter
ŵŵ.Ŵ, pp. ŴŻ–ŶŶ.

Źŷ

https://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1706.08500
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
https://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1706.02025
http://arxiv.org/abs/1706.02025

Moreira, Miguel and Emile Fiesler (ŴżżŸ). Neural networks with adaptive learning rate and momentum
terms. Tech. rep. Idiap.

Nichols, James A, Hsien W Herbert Chan, and Matthew AB Baker (ŵųŴż). “Machine learning: applications
of artificial intelligence to imaging and diagnosis”. In: Biophysical reviews ŴŴ.Ŵ, pp. ŴŴŴ–ŴŴŻ.

Nielsen, Michael A (ŵųŴŸ). Neural networks and deep learning. Vol. ŵŸ. Determination press San Francisco,
CA.

Paolucci, Roberto, Filippo Gatti, Maria Infantino, Chiara Smerzini, Ali Güney Özcebe, and Marco Stupazzini
(ŵųŴŻ). “Broadband ground motions from ŶD physics-based numerical simulations using artificial
neural networks”. In: Bulletin of the Seismological Society of America ŴųŻ.ŶA, pp. Ŵŵźŵ–ŴŵŻŹ.

Papadrakakis, Manolis, Vissarion Papadopoulos, and Nikos D Lagaros (ŴżżŹ). “Structural reliability analyis
of elastic-plastic structures using neural networks and Monte Carlo simulation”. In: Computer methods
in applied mechanics and engineering ŴŶŹ.Ŵ-ŵ, pp. ŴŷŸ–ŴŹŶ.

Papalambros, Panos Y and Douglass J Wilde (ŵųųų). Principles of optimal design: modeling and computation.
Cambridge university press.

Parish, Eric J and Karthik Duraisamy (ŵųŴŹ). “A paradigm for data-driven predictive modeling using field
inversion and machine learning”. In: Journal of Computational Physics ŶųŸ, pp. źŸŻ–źźŷ.

Parker, DavidB (ŴżŻŸ). “Learning-logic: Casting the cortex of the human brain in silicon”. In:

Pathak, Deepak, Philipp Krähenbühl, and Trevor Darrell (ŵųŴŸ). “Constrained Convolutional Neural Networks
for Weakly Supervised Segmentation”. In: CoRR abs/ŴŸųŹ.ųŶŹŷŻ. arXiv: 1506 . 03648. URL: http :
//arxiv.org/abs/1506.03648.

Peng, Hong, Jingwen Yan, Ying Yu, and Yaozhi Luo (ŵųŵŴ). “Time series estimation based on deep Learning
for structural dynamic nonlinear prediction”. In: Structures. Vol. ŵż. Elsevier, pp. ŴųŴŹ–ŴųŶŴ.

Raissi, Maziar and George E. Karniadakis (ŵųŴź). “Hidden Physics Models: Machine Learning of Nonlinear
Partial Differential Equations”. In: CoRR abs/ŴźųŻ.ųųŸŻŻ. arXiv: 1708.00588. URL: http://arxiv.
org/abs/1708.00588.

Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (ŵųŴż). “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial differential
equations”. In: Journal of Computational Physics ŶźŻ, pp. ŹŻŹ–źųź.

Raissi, Maziar, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis (ŵųŴż). “Deep learning
of vortex-induced vibrations”. In: Journal of Fluid Mechanics ŻŹŴ, pp. ŴŴż–ŴŶź.

Raissi, Maziar, Alireza Yazdani, and George Em Karniadakis (ŵųŴŻ). “Hidden fluid mechanics: A navier-stokes
informed deep learning framework for assimilating flow visualization data”. In: arXiv preprint arXiv:ųźŲź.ŲŶŵŴŹ.

Rosenblatt, Frank (ŴżŸŻ). “The perceptron: a probabilistic model for information storage and organization
in the brain.” In: Psychological review ŹŸ.Ź, p. ŶŻŹ.

ŹŸ

https://arxiv.org/abs/1506.03648
http://arxiv.org/abs/1506.03648
http://arxiv.org/abs/1506.03648
https://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588
http://arxiv.org/abs/1708.00588

San, Omer and Romit Maulik (ŵųŴŻ). “Machine learning closures for model order reduction of thermal
fluids”. In: Applied Mathematical Modelling Źų, pp. ŹŻŴ–źŴų.

Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia
(ŵųŵų). “Learning to simulate complex physics with graph networks”. In: International Conference on
Machine Learning. PMLR, pp. ŻŷŸż–ŻŷŹŻ.

Senouf, Ortal, Sanketh Vedula, Tomer Weiss, Alex Bronstein, Oleg Michailovich, and Michael Zibulevsky
(ŵųŴż). “Self-supervised learning of inverse problem solvers in medical imaging”. In: Domain adaptation
and representation transfer and medical image learning with less labels and imperfect data. Springer,
pp. ŴŴŴ–ŴŴż.

Shah, Viraj, Ameya Joshi, Sambuddha Ghosal, Balaji Pokuri, Soumik Sarkar, Baskar Ganapathysubramanian,
and Chinmay Hegde (ŵųŴż). “Encoding invariances in deep generative models”. In: arXiv preprint
arXiv:ųŻŲŸ.ŲųŸŴŸ.

Singh, Dalwinder and Birmohan Singh (ŵųŵų). “Investigating the impact of data normalization on classification
performance”. In: Applied Soft Computing żź, p. ŴųŸŸŵŷ.

Sirignano, Justin and Konstantinos Spiliopoulos (ŵųŴŻ). “DGM: A deep learning algorithm for solving partial
differential equations”. In: Journal of computational physics ŶźŸ, pp. ŴŶŶż–ŴŶŹŷ.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov (ŵųŴŷ). “Dropout:
a simple way to prevent neural networks from overfitting”. In: The journal of machine learning research
ŴŸ.Ŵ, pp. Ŵżŵż–ŴżŸŻ.

Sun, Luning, Han Gao, Shaowu Pan, and Jian-Xun Wang (ŵųŵų). “Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data”. In: Computer Methods in Applied
Mechanics and Engineering ŶŹŴ, p. ŴŴŵźŶŵ.

Thai, Huu-Tai (ŵųŵŵ). “Machine learning for structural engineering: A state-of-the-art review”. In: Structures.
Vol. ŶŻ. Elsevier, pp. ŷŷŻ–ŷżŴ.

Thompson, Michael L and Mark A Kramer (Ŵżżŷ). “Modeling chemical processes using prior knowledge
and neural networks”. In: AIChE Journal ŷų.Ż, pp. ŴŶŵŻ–ŴŶŷų.

Ulyanov, Dmitry, Andrea Vedaldi, and Victor Lempitsky (ŵųŴŻ). “Deep image prior”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. żŷŷŹ–żŷŸŷ.

Wang, Sifan, Yujun Teng, and Paris Perdikaris (ŵųŵŴ). “Understanding and mitigating gradient flow pathologies
in physics-informed neural networks”. In: SIAM Journal on Scientific Computing ŷŶ.Ÿ, AŶųŸŸ–AŶųŻŴ.

White, Cristina, Daniela Ushizima, and Charbel Farhat (ŵųŴża). Fast Neural Network Predictions from
Constrained Aerodynamics Datasets. DOI: 10.48550/ARXIV.1902.00091. URL: https://arxiv.
org/abs/1902.00091.

White, Cristina, Daniela Ushizima, and Charbel Farhat (ŵųŴżb). “Neural networks predict fluid dynamics
solutions from tiny datasets”. In: arXiv preprint arXiv:ųŻŲŴ.ŲŲŲŻų.

ŹŹ

https://doi.org/10.48550/ARXIV.1902.00091
https://arxiv.org/abs/1902.00091
https://arxiv.org/abs/1902.00091

Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar (ŵųŵų). “Integrating scientific
knowledge with machine learning for engineering and environmental systems”. In: arXiv preprint
arXiv:ŴŲŲŵ.ŲŶŻųŻ.

Wu, Jin-Long, Karthik Kashinath, Adrian Albert, Dragos Chirila, Heng Xiao, et al. (ŵųŵų). “Enforcing statistical
constraints in generative adversarial networks for modeling chaotic dynamical systems”. In: Journal of
Computational Physics ŷųŹ, p. Ŵųżŵųż.

Wu, Wenxuan, Zhongang Qi, and Li Fuxin (ŵųŴż). “Pointconv: Deep convolutional networks on Ŷd point
clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. żŹŵŴ–żŹŶų.

Yang, Liu, Sean Treichler, Thorsten Kurth, Keno Fischer, David Barajas-Solano, Josh Romero, Valentin Churavy,
Alexandre Tartakovsky, Michael Houston, Mr Prabhat, et al. (ŵųŴż). “Highly-scalable, physics-informed
GANs for learning solutions of stochastic PDEs”. In: ŴŲųŻ IEEE/ACM Third Workshop on Deep Learning
on Supercomputers (DLS). IEEE, pp. Ŵ–ŴŴ.

Yang, Yibo and Paris Perdikaris (ŵųŴż). “Adversarial uncertainty quantification in physics-informed neural
networks”. In: Journal of Computational Physics Ŷżŷ, pp. ŴŶŹ–ŴŸŵ.

Yang, Yibo and Paris Perdikaris (ŵųŴŻ). “Physics-informed deep generative models”. In: arXiv preprint
arXiv:ųźųŴ.Ųŵŷųų.

Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schütze (ŵųŴź). “Comparative study of CNN and RNN
for natural language processing”. In: arXiv preprint arXiv:ųŹŲŴ.ŲųŻŴŵ.

Zadeh, Reza (Nov. ŵųŴŹ). The hard thing about deep learning. URL: https://www.oreilly.com/radar/
the-hard-thing-about-deep-learning/?twitter=%40bigdata.

Zhang, Liang, Gang Wang, and Georgios B Giannakis (ŵųŴż). “Real-time power system state estimation
and forecasting via deep unrolled neural networks”. In: IEEE Transactions on Signal Processing Źź.ŴŸ,
pp. ŷųŹż–ŷųźź.

Zhang, Linfeng, Jiequn Han, Han Wang, Roberto Car, and E Weinan (ŵųŴŻ). “Deep potential molecular
dynamics: a scalable model with the accuracy of quantum mechanics”. In: Physical review letters
Ŵŵų.Ŵŷ, p. ŴŷŶųųŴ.

Zhu, Minjie and Michael H Scott (ŵųŴŷ). “Improved fractional step method for simulating fluid-structure
interaction using the PFEM”. In: International Journal for Numerical Methods in Engineering żż.Ŵŵ,
pp. żŵŸ–żŷŷ.

Zhu, Yinhao, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris (ŵųŴż). “Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled
data”. In: Journal of Computational Physics Ŷżŷ, pp. ŸŹ–ŻŴ.

Źź

https://www.oreilly.com/radar/the-hard-thing-about-deep-learning/?twitter=%40bigdata
https://www.oreilly.com/radar/the-hard-thing-about-deep-learning/?twitter=%40bigdata

	TABLE OF CONTENTS
	LIST OF FIGURE
	LIST OF TABLES
	INTRODUCTION
	Objectives
	Organization of Report

	MACHINE LEARNING/ DEEP LEARNING INTRODUCTION
	Introduction
	Types of Machine Learning
	Supervised Learning
	Unsupervised Learning

	Deep Learning
	Artificial Neural Network
	Activation Function
	Weights and Biases
	A Simple Neural Network

	Feedforward Pass
	Training a Neural Network
	Cost Functions
	Back Propagation
	Optimization of Neural Network
	Training NN Using Gradient Descent

	STATIC MODEL WITH CONSTANT STIFFNESS
	Introduction
	Static Model Description
	Neural Network Estimation
	Weight Initialization
	Xavier Weight Initialization
	He Weight Initialization

	Data Normalization
	Physics Learning NN
	Neural Network Architecture
	One Layer without Bias Neural Network
	Two Layer without Bias Neural Network
	Two Layer with Bias Neural Network

	Hyperparameter Tuning
	Results
	Extrapolation
	Conclusions

	STATIC MODEL WITH VARYING STIFFNESS
	Introduction
	Static Model Description
	Neural Network Feedforward Calculation
	Log Normalization
	Physics-Informed NN
	Regularization Loss Function with Physics
	Results
	Conclusions

	DYNAMIC MODEL
	Introduction
	Dynamic Model Description
	Recurrent Neural Network
	RNN Architectures
	RNN Forward Pass
	Data Normalization
	Min-Max Normalization
	Variable Stability Scaling (VSS)
	Pareto Scaling (PS)
	Power Transformation (PT)
	Hyperbolic Tangent Normalization (TN)
	Sigmoidal Normalization Logistic Sigmoid (LS)
	Sigmoidal Normalization Hyperbolic Tangent (HT)

	Many-to-One RNN Architecture
	Results
	Future Work

	FLUID STRUCTURE INTERACTION
	PFEM and NN models
	Results
	Summary and Conclusions

	CONCLUSIONS
	Conclusions
	Limitations and Future Work

Accessibility Report

		Filename:

		Pilot Study_ Machine Learning and Deep Learning_20220729_REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 3

		Failed manually: 0

		Skipped: 0

		Passed: 24

		Failed: 5

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Failed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed manually		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Failed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

